Skip to main content

Many-Valued Relation Lifting and Moss’ Coalgebraic Logic

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8089)

Abstract

The notion of relation lifting can be generalised to work with many-valued relations while retaining many vital properties of the “classical” relation lifting. We show that polynomial endofunctors of the category of sets and mappings admit \(\mathcal{V}\)-relation lifting for relations taking values from a commutative quantale \(\mathcal{V}\). Using the technique of functor presentations, we then show that every finitary weak pullback preserving functor admits a \(\mathcal{V}\)-relation lifting for \(\mathcal{V}\) being a complete Heyting algebra. As an application of the many-valued lifting we inspect the notion of many-valued bisimulation and we introduce an expressive many-valued variant of Moss’ logic for T-coalgebras, parametric in the functor T.

Keywords

  • coalgebra
  • coalgebraic logic
  • relation lifting
  • many-valued logic

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40206-7_7
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   49.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-40206-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   64.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adámek, J., Gumm, H.P., Trnková, V.: Presentation of set functors: A coalgebraic perspective. Journal of Logic and Computation 20(5), 991–1015 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Mathematics and its Applications. Kluwer (1990)

    Google Scholar 

  3. Barr, M.: Relational algebras. In: Mac Lane, S., Applegate, H., Barr, M., Day, B., Dubuc, E., Phreilambud, Pultr, A., Street, R., Tierney, M., Swierczkowski, S. (eds.) Reports of the Midwest Category Seminar IV. Lecture Notes in Mathematics, vol. 137, pp. 39–55. Springer, Heidelberg (1970)

    CrossRef  Google Scholar 

  4. Bílková, M., Kurz, A., Petrişan, D., Velebil, J.: Relation Liftings on Preorders and Posets. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 115–129. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  5. Bílková, M., Kurz, A., Petrişan, D., Velebil, J.: Relation lifting, with an application to the many-valued cover modality. Log. Methods Comput. Sci. (accepted for publication, 2013)

    Google Scholar 

  6. Bou, F., Esteva, F., Godo, L., Rodríguez, R.: On the minimum many-valued modal logic over a finite residuated lattice. Journal of Logic and Computation 21(5), 739–790 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Dostál, M.: Many-valued coalgebraic logic. Master’s thesis, Czech Technical University (2013), http://cyber.felk.cvut.cz/research/theses/papers/322.pdf

  8. Fitting, M.: Many-valued modal logics. In: Fundamenta Informaticae, pp. 365–448. Kluwer Academic Publishers (1992)

    Google Scholar 

  9. Fitting, M.: Many-valued modal logics ii. Fundamenta Informaticae 17 (1992)

    Google Scholar 

  10. Gumm, H.P.: From T-coalgebras to filter structures and transition systems. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 194–212. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  11. Kupke, C., Kurz, A., Venema, Y.: Completeness for the coalgebraic cover modality. Logical Methods in Computer Science 8(3) (2012)

    Google Scholar 

  12. Kurz, A., Leal, R.: Modalities in the stone age: A comparison of coalgebraic logics. Theoretical Computer Science 430, 88–116 (2012); Mathematical Foundations of Programming Semantics (MFPS XXV)

    Google Scholar 

  13. Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96 (1999)

    Google Scholar 

  14. Trnková, V.: Relational automata in a category and their languages. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 340–355. Springer, Heidelberg (1977)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bílková, M., Dostál, M. (2013). Many-Valued Relation Lifting and Moss’ Coalgebraic Logic. In: Heckel, R., Milius, S. (eds) Algebra and Coalgebra in Computer Science. CALCO 2013. Lecture Notes in Computer Science, vol 8089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40206-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40206-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40205-0

  • Online ISBN: 978-3-642-40206-7

  • eBook Packages: Computer ScienceComputer Science (R0)