Abstract
The notion of relation lifting can be generalised to work with many-valued relations while retaining many vital properties of the “classical” relation lifting. We show that polynomial endofunctors of the category of sets and mappings admit \(\mathcal{V}\)-relation lifting for relations taking values from a commutative quantale \(\mathcal{V}\). Using the technique of functor presentations, we then show that every finitary weak pullback preserving functor admits a \(\mathcal{V}\)-relation lifting for \(\mathcal{V}\) being a complete Heyting algebra. As an application of the many-valued lifting we inspect the notion of many-valued bisimulation and we introduce an expressive many-valued variant of Moss’ logic for T-coalgebras, parametric in the functor T.
Keywords
- coalgebra
- coalgebraic logic
- relation lifting
- many-valued logic
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Adámek, J., Gumm, H.P., Trnková, V.: Presentation of set functors: A coalgebraic perspective. Journal of Logic and Computation 20(5), 991–1015 (2010)
Adámek, J., Trnková, V.: Automata and Algebras in Categories. Mathematics and its Applications. Kluwer (1990)
Barr, M.: Relational algebras. In: Mac Lane, S., Applegate, H., Barr, M., Day, B., Dubuc, E., Phreilambud, Pultr, A., Street, R., Tierney, M., Swierczkowski, S. (eds.) Reports of the Midwest Category Seminar IV. Lecture Notes in Mathematics, vol. 137, pp. 39–55. Springer, Heidelberg (1970)
Bílková, M., Kurz, A., Petrişan, D., Velebil, J.: Relation Liftings on Preorders and Posets. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 115–129. Springer, Heidelberg (2011)
Bílková, M., Kurz, A., Petrişan, D., Velebil, J.: Relation lifting, with an application to the many-valued cover modality. Log. Methods Comput. Sci. (accepted for publication, 2013)
Bou, F., Esteva, F., Godo, L., Rodríguez, R.: On the minimum many-valued modal logic over a finite residuated lattice. Journal of Logic and Computation 21(5), 739–790 (2011)
Dostál, M.: Many-valued coalgebraic logic. Master’s thesis, Czech Technical University (2013), http://cyber.felk.cvut.cz/research/theses/papers/322.pdf
Fitting, M.: Many-valued modal logics. In: Fundamenta Informaticae, pp. 365–448. Kluwer Academic Publishers (1992)
Fitting, M.: Many-valued modal logics ii. Fundamenta Informaticae 17 (1992)
Gumm, H.P.: From T-coalgebras to filter structures and transition systems. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 194–212. Springer, Heidelberg (2005)
Kupke, C., Kurz, A., Venema, Y.: Completeness for the coalgebraic cover modality. Logical Methods in Computer Science 8(3) (2012)
Kurz, A., Leal, R.: Modalities in the stone age: A comparison of coalgebraic logics. Theoretical Computer Science 430, 88–116 (2012); Mathematical Foundations of Programming Semantics (MFPS XXV)
Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96 (1999)
Trnková, V.: Relational automata in a category and their languages. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 340–355. Springer, Heidelberg (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bílková, M., Dostál, M. (2013). Many-Valued Relation Lifting and Moss’ Coalgebraic Logic. In: Heckel, R., Milius, S. (eds) Algebra and Coalgebra in Computer Science. CALCO 2013. Lecture Notes in Computer Science, vol 8089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40206-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-40206-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40205-0
Online ISBN: 978-3-642-40206-7
eBook Packages: Computer ScienceComputer Science (R0)