Skip to main content

Positive Fragments of Coalgebraic Logics

  • Conference paper
Book cover Algebra and Coalgebra in Computer Science (CALCO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8089))

Included in the following conference series:

Abstract

Positive modal logic was introduced in an influential 1995 paper of Dunn as the positive fragment of standard modal logic. His completeness result consists of an axiomatization that derives all modal formulas that are valid on all Kripke frames and are built only from atomic propositions, conjunction, disjunction, box and diamond.

In this paper, we provide a coalgebraic analysis of this theorem, which not only gives a conceptual proof based on duality theory, but also generalizes Dunn’s result from Kripke frames to coalgebras of weak-pullback preserving functors.

For possible application to fixed-point logics, it is note-worthy that the positive coalgebraic logic of a functor is given not by all predicate-liftings but by all monotone predicate liftings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S.: A Cook’s Tour of the Finitary Non-Well-Founded Sets. In: Artemov, S., Barringer, H., d’Avila Garcez, A., Lamb, L.C., Woods, J. (eds.) We Will Show Them: Essays in Honour of Dov Gabbay, vol. 1, pp. 1–18. College Publications (2005), http://arxiv.org/pdf/1111.7148.pdf

  2. Adámek, J., Herrlich, J., Strecker, G.E.: Abstract and Concrete Categories. John Wiley & Sons (1990)

    Google Scholar 

  3. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Math. Soc. LNS, vol. 189. Cambridge Univ. Press (1994)

    Google Scholar 

  4. Balan, A., Kurz, A.: Finitary Functors: From Set to Preord and Poset. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 85–99. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Bílková, M., Kurz, A., Petrişan, D., Velebil, J.: Relation Liftings on Preorders and Posets. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 115–129. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theor. Comput. Sci., vol. 53. Cambridge Univ. Press (2002)

    Google Scholar 

  7. Bonsangue, M.M., Kurz, A.: Presenting Functors by Operations and Equations. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 172–186. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Bourke, J.: Codescent Objects in 2-Dimensional Universal Algebra, PhD Thesis, University of Sydney (2010)

    Google Scholar 

  9. Carboni, A., Street, R.: Order Ideals in Categories. Pacific J. Math. 124, 275–288 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dunn, J.M.: Positive Modal Logic. Studia Logica 55, 301–317 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guitart, R.: Rélations et Carrés Exacts. Ann. Sci. Math. Qué. 4, 103–125 (1980)

    MathSciNet  MATH  Google Scholar 

  12. Johnstone, P.T.: Stone Spaces. Cambridge Univ. Press (1982)

    Google Scholar 

  13. Johnstone, P.T.: Vietoris Locales and Localic Semilattices. In: Hoffmann, R.E., Hofmann, K.H. (eds.) Continuous Lattices and their Applications. LNPAM, vol. 101, pp. 155–180. Marcel Dekker (1985)

    Google Scholar 

  14. Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Math. Soc. LNS, vol. 64. Cambridge Univ. Press (1982), Reprint as: Theory Appl. Categ. 10 (2005)

    Google Scholar 

  15. Kelly, G.M.: Structures Defined by Finite Limits in the Enriched Context. I. Cah. Topol. Géom. Différ. Catég. 23, 3–42 (1982)

    MATH  Google Scholar 

  16. Kelly, G.M.: Elementary Observations on 2-Categorical Limits. Bull. Austral. Math. Soc. 39, 301–317 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kelly, G.M., Lack, S.: Finite Product-Preserving-Functors, Kan Extensions and Strongly-Finitary 2-Monads. Appl. Categ. Struct. 1, 85–94 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kurz, A., Leal, R.: Equational Coalgebraic Logic. ENTCS 249, 333–356 (2009)

    Google Scholar 

  19. Kurz, A., Rosický, J.: Strongly Complete Logics for Coalgebras, Logic. Meth. Comput. Sci. 8, 1–32 (2012)

    Google Scholar 

  20. Kurz, A., Velebil, J.: Enriched Logical Connections. Appl. Categ. Struct (2011) (online first)

    Google Scholar 

  21. Kurz, A., Velebil, J.: Quasivarieties and Varieties of Ordered Algebras: Regularity and exactness (February 2013), http://www.cs.le.ac.uk/people/akurz/pos_ua.pdf (submitted)

  22. Lack, S., Rosický, J.: Notions of Lawvere Theory. Appl. Categ. Struct. 19, 363–391 (2011)

    Article  MATH  Google Scholar 

  23. Mac Lane, S.: Categories for the Working Mathematician. GTM, vol. 5. Springer (1971)

    Google Scholar 

  24. Palmigiano, A.: A Coalgebraic View on Positive Modal Logic. Theor. Comput. Sci. 327, 175–195 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pattinson, D.: Coalgebraic Modal Logic: Soundness, Completeness and Decidability of Local Consequence. Theor. Comput. Sci. 309, 177–193 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Robinson, E.: Powerdomains, Modalities and the Vietoris Monad. Comp. Lab. Tech. Report. 98, Univ. Cambridge (1986)

    Google Scholar 

  27. Schröder, L.: Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 440–454. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  28. Velebil, J., Kurz, A.: Equational Presentations of Functors and Monads. Math. Struct. Comput. Sci. 21, 363–381 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach. Theor. Comput. Sci. 221, 271–293 (1999)

    Article  MATH  Google Scholar 

  30. Winskel, G.: On Powerdomains and Modality. Theor. Comput. Sci. 36, 127–137 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balan, A., Kurz, A., Velebil, J. (2013). Positive Fragments of Coalgebraic Logics. In: Heckel, R., Milius, S. (eds) Algebra and Coalgebra in Computer Science. CALCO 2013. Lecture Notes in Computer Science, vol 8089. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40206-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40206-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40205-0

  • Online ISBN: 978-3-642-40206-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics