Skip to main content

Penrose: Putting Compositionality to Work for Petri Net Reachability

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8089)


Recent work by the authors introduced a technique for reachability checking in Petri Nets, exploiting compositionality to increase performance for some well-known examples. We introduce a tool that uses this technique, Penrose, discuss some design details in its implementation, and identify potential future improvements.


  • Model Check
  • Monoidal Category
  • Binary Decision Diagram
  • Reachability Problem
  • Ordered Binary Decision Diagram

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, H.R.: An Introduction to Binary Decision Diagrams. Technical Report October 1997, Technical University of Denmark (1997)

    Google Scholar 

  2. Bollig, B., Wegener, I.: Improving the Variable Ordering of OBDDs Is NP-complete. IEEE Transactions on Computers 45(9), 993–1002 (1996)

    CrossRef  MATH  Google Scholar 

  3. Bruni, R., Melgratti, H.C., Montanari, U., Sobociński, P.: Connector algebras for C/E and P/T nets’ interactions. In: LMCS (to appear, 2013)

    Google Scholar 

  4. Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite events. In: Mathematical Theory of Automata. MRI Symposia, vol. 12, pp. 529–561. Polytechnic Institute of Brooklyn, Polytechnic Press (1962)

    Google Scholar 

  5. Clarke, E.M., Long, D., McMillan, K.: Compositional model checking. In: LiCS 1989, pp. 352–362 (1989)

    Google Scholar 

  6. Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation. Formal Methods in System Design 10(2-3), 149–169 (1993)

    Google Scholar 

  7. Katis, P., Sabadini, N., Walters, R.: Compositional minimization in Span(Graph): Some examples. ENTCS 104C, 181–197 (2004)

    Google Scholar 

  8. McMillan, K.: A technique of a state space search based on unfolding. Form Method Syst. Des. 6(1), 45–65 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  9. Minato, S.-I., Ishiura, N., Yajima, S.: Shared Binary Decision Diagram with Attributed Edges for Efficient Boolean Function Manipulation. In: Proc. DAC 1990, pp. 52–57. ACM Press (1990)

    Google Scholar 

  10. Rathke, J., Sobociński, P., Stephens, O.: Decomposing Petri nets. arXiv:1304.3121v1 (2013)

    Google Scholar 

  11. Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  12. Sobociński, P., Stephens, O.: Reachability via compositionality in Petri nets. arXiv:1303.1399v1 (2013)

    Google Scholar 

  13. Starke, P.: Reachability analysis of Petri nets using symmetries. Systems Analysis Modelling Simulation 4/5, 292–303 (1991)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sobociński, P., Stephens, O. (2013). Penrose: Putting Compositionality to Work for Petri Net Reachability. In: Heckel, R., Milius, S. (eds) Algebra and Coalgebra in Computer Science. CALCO 2013. Lecture Notes in Computer Science, vol 8089. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40205-0

  • Online ISBN: 978-3-642-40206-7

  • eBook Packages: Computer ScienceComputer Science (R0)