Advertisement

Penrose: Putting Compositionality to Work for Petri Net Reachability

  • Paweł Sobociński
  • Owen Stephens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8089)

Abstract

Recent work by the authors introduced a technique for reachability checking in Petri Nets, exploiting compositionality to increase performance for some well-known examples. We introduce a tool that uses this technique, Penrose, discuss some design details in its implementation, and identify potential future improvements.

Keywords

Model Check Monoidal Category Binary Decision Diagram Reachability Problem Ordered Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, H.R.: An Introduction to Binary Decision Diagrams. Technical Report October 1997, Technical University of Denmark (1997)Google Scholar
  2. 2.
    Bollig, B., Wegener, I.: Improving the Variable Ordering of OBDDs Is NP-complete. IEEE Transactions on Computers 45(9), 993–1002 (1996)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bruni, R., Melgratti, H.C., Montanari, U., Sobociński, P.: Connector algebras for C/E and P/T nets’ interactions. In: LMCS (to appear, 2013)Google Scholar
  4. 4.
    Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite events. In: Mathematical Theory of Automata. MRI Symposia, vol. 12, pp. 529–561. Polytechnic Institute of Brooklyn, Polytechnic Press (1962)Google Scholar
  5. 5.
    Clarke, E.M., Long, D., McMillan, K.: Compositional model checking. In: LiCS 1989, pp. 352–362 (1989)Google Scholar
  6. 6.
    Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation. Formal Methods in System Design 10(2-3), 149–169 (1993)Google Scholar
  7. 7.
    Katis, P., Sabadini, N., Walters, R.: Compositional minimization in Span(Graph): Some examples. ENTCS 104C, 181–197 (2004)Google Scholar
  8. 8.
    McMillan, K.: A technique of a state space search based on unfolding. Form Method Syst. Des. 6(1), 45–65 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Minato, S.-I., Ishiura, N., Yajima, S.: Shared Binary Decision Diagram with Attributed Edges for Efficient Boolean Function Manipulation. In: Proc. DAC 1990, pp. 52–57. ACM Press (1990)Google Scholar
  10. 10.
    Rathke, J., Sobociński, P., Stephens, O.: Decomposing Petri nets. arXiv:1304.3121v1 (2013)Google Scholar
  11. 11.
    Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Sobociński, P., Stephens, O.: Reachability via compositionality in Petri nets. arXiv:1303.1399v1 (2013)Google Scholar
  13. 13.
    Starke, P.: Reachability analysis of Petri nets using symmetries. Systems Analysis Modelling Simulation 4/5, 292–303 (1991)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paweł Sobociński
    • 1
  • Owen Stephens
    • 1
  1. 1.ECSUniversity of SouthamptonUK

Personalised recommendations