Skip to main content

Learning and Designing Stochastic Processes from Logical Constraints

  • Conference paper
Quantitative Evaluation of Systems (QEST 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8054))

Included in the following conference series:

Abstract

Continuous time Markov Chains (CTMCs) are a convenient mathematical model for a broad range of natural and computer systems. As a result, they have received considerable attention in the theoretical computer science community, with many important techniques such as model checking being now mainstream. However, most methodologies start with an assumption of complete specification of the CTMC, in terms of both initial conditions and parameters. While this may be plausible in some cases (e.g. small scale engineered systems) it is certainly not valid nor desirable in many cases (e.g. biological systems), and it does not lead to a constructive approach to rational design of systems based on specific requirements. Here we consider the problems of learning and designing CTMCs from observations/ requirements formulated in terms of satisfaction of temporal logic formulae. We recast the problem in terms of learning and maximising an unknown function (the likelihood of the parameters) which can be numerically estimated at any value of the parameter space (at a non-negligible computational cost). We adapt a recently proposed, provably convergent global optimisation algorithm developed in the machine learning community, and demonstrate its efficacy on a number of non-trivial test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersson, H., Britton, T.: Stochastic Epidemic Models and Their Statistical Analysis. Springer (2000)

    Google Scholar 

  3. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum likelihood estimation for stochastic chemical kinetics. EURASIP Journal on Bioinf. and Sys. Bio. 9 (2012)

    Google Scholar 

  4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model checking continuous-time Markov chains by transient analysis. IEEE TSE 29(6), 524–541 (2003)

    Google Scholar 

  5. Barnes, C.P., Silk, D., Sheng, X., Stumpf, M.P.: Bayesian design of synthetic biological systems. PNAS USA 108(37), 15190–15195 (2011)

    Article  Google Scholar 

  6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  7. Bradley, J.T., Gilmore, S.T., Hillston, J.: Analysing distributed internet worm attacks using continuous state-space approximation of process algebra models. J. Comput. Syst. Sci. 74(6), 1013–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, T., Diciolla, M., Kwiatkowska, M.Z., Mereacre, A.: Time-bounded verification of CTMCs against real-time specifications. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 26–42. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley (2006)

    Google Scholar 

  10. Durrett, R.: Essentials of stochastic processes. Springer (2012)

    Google Scholar 

  11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. of Physical Chemistry 81(25) (1977)

    Google Scholar 

  12. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian approach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Jha, S.K., Langmead, C.J.: Synthesis and infeasibility analysis for stochastic models of biochemical systems using statistical model checking and abstraction refinement. Theor. Comp. Sc. 412(21), 2162–2187 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kennedy, M., O’Hagan, A.: Bayesian calibration of computer models. Journal of the Royal Stat. Soc. Ser. B 63(3), 425–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. Int. Jour. on Softw. Tools for Tech. Transf. 6(2), 128–142 (2004)

    Google Scholar 

  16. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Opper, M., Sanguinetti, G.: Variational inference for Markov jump processes. In: Proc. of NIPS (2007)

    Google Scholar 

  18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press (2006)

    Google Scholar 

  19. Romero, P.A., Krause, A., Arnold, F.H.: Navigating the protein fitness landscape with Gaussian processes. PNAS USA 110(3), E193–E201 (2013)

    Article  Google Scholar 

  20. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Information-theoretic regret bounds for Gaussian process optimisation in the bandit setting. IEEE Trans. Inf. Th. 58(5), 3250–3265 (2012)

    Article  MathSciNet  Google Scholar 

  21. Vezhnevets, A., Ferrari, V., Buhmann, J.: Weakly supervised structured output learning for semantic segmentation. In: Comp. Vision and Pattern Recog. (2012)

    Google Scholar 

  22. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bortolussi, L., Sanguinetti, G. (2013). Learning and Designing Stochastic Processes from Logical Constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds) Quantitative Evaluation of Systems. QEST 2013. Lecture Notes in Computer Science, vol 8054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40196-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40196-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40195-4

  • Online ISBN: 978-3-642-40196-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics