R. Agarwala, D. Fernandez-Baca, A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J. Comput. 23(6), 1216–1224 (1994)
CrossRef
MATH
MathSciNet
Google Scholar
P. Bonizzoni, A linear time algorithm for the Perfect Phylogeny Haplotype problem. Algorithmica 48(3), 267–285 (2007)
CrossRef
MATH
MathSciNet
Google Scholar
P. Bonizzoni, G. Della Vedova, R. Dondi, J. Li, The haplotyping problem: an overview of computational models and solutions. J. Comput. Sci. Technol. 18(6), 675–688 (2003)
CrossRef
MATH
MathSciNet
Google Scholar
P. Bonizzoni, C. Braghin, R. Dondi, G. Trucco, The binary persistent perfect phylogeny. Theor. Comput. Sci. 454, 51–63 (2012)
CrossRef
MATH
MathSciNet
Google Scholar
J. Camin, R. Sokal, A method for deducting branching sequences in phylogeny. Evolution 19, 311–326 (1965)
CrossRef
Google Scholar
L.L. Cavalli-Sforza, A.W.F. Edwards, Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19(3 Pt 1), 233 (1967)
Google Scholar
Z. Ding, V. Filkov, D. Gusfield, A linear time algorithm for Perfect Phylogeny Haplotyping (pph) problem. J. Comput. Biol. 13(2), 522–553 (2006)
CrossRef
MathSciNet
Google Scholar
T. Dobzhansky, Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35(3), 125–129 (1973)
CrossRef
Google Scholar
R.G. Downey, M.R. Fellows, Parameterized Complexity, Monographs in Computer Science, (Springer-Verlag, New York, 1999). ISBN 978-0-387-94883-6
CrossRef
Google Scholar
A.W.F. Edwards, L.L. Cavalli-Sforza, The reconstruction of evolution. Heredity 18, 553 (1963)
Google Scholar
J. Felsenstein, Inferring Phylogenies (Sinauer Associates, Sunderland, 2004)
Google Scholar
S. Felsner, V. Raghavan, J. Spinrad, Recognition algorithms for orders of small width and graphs of small Dilworth number. Order 20, 351–364 (2003)
CrossRef
MathSciNet
Google Scholar
D. Fernandez-Baca, J. Lagergren, A polynomial-time algorithm for near-perfect phylogeny. SIAM J. Comput. 32(5), 1115–1127 (2003)
CrossRef
MATH
MathSciNet
Google Scholar
L. Foulds, R. Graham, The Steiner problem in phylogeny is NP-complete. Adv. Appl. Math. 3(1), 43–49 (1982)
CrossRef
MATH
MathSciNet
Google Scholar
M. Garey, D. Johnson, Computer and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, San Francisco, 1979)
Google Scholar
M. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic, New York, 1980)
MATH
Google Scholar
D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology (Cambridge University Press, Cambridge, 1997)
CrossRef
MATH
Google Scholar
D. Gusfield, Haplotyping as perfect phylogeny: conceptual framework and efficient solutions, in Proceedings of the 6th Annual Conference on Research in Computational Molecular Biology (RECOMB), Washington, DC, 2002, pp. 166–175
Google Scholar
J. Håstad, Clique is hard to approximate within n
1−ε. Acta Math. 182, 105–142 (1999). doi:10.1007/BF02392825
CrossRef
MATH
MathSciNet
Google Scholar
S. Kannan, T. Warnow, A fast algorithm for the computation and enumeration of perfect phylogenies. SIAM J. Comput. 26(6), 1749–1763 (1997)
CrossRef
MATH
MathSciNet
Google Scholar
R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, ed. by R.E. Miller, J.W. Thatcher. The IBM Research Symposia Series (Plenum Press, New York, 1972), pp. 85–103
CrossRef
Google Scholar
I. Peer, T. Pupko, R. Shamir, R. Sharan, Incomplete directed perfect phylogeny. SIAM J. Comput. 33(3), 590–607 (2004)
CrossRef
MathSciNet
Google Scholar
T.M. Przytycka, An important connection between network motifs and parsimony models, in Proceedings of the 10th Annual Conference on Research in Computational Molecular Biology (RECOMB), Venice, 2006, pp. 321–335
Google Scholar
T. Przytycka, G. Davis, N. Song, D. Durand, Graph theoretical insights into Dollo parsimony and evolution of multidomain proteins. J. Comput. Biol. 13(2), 351–363 (2006)
CrossRef
MathSciNet
Google Scholar
R.V. Satya, A. Mukherjee, G. Alexe, L. Parida, G. Bhanot, Constructing near-perfect phylogenies with multiple homoplasy events, in ISMB (Supplement of Bioinformatics), Fortaleza, 2006, pp. 514–522
Google Scholar
C. Semple, M. Steel, Phylogenetics. Oxford Lecture Series in Mathematics and Its Applications (Oxford University Press, Oxford, 2003)
Google Scholar
S. Sridhar, K. Dhamdhere, G. Blelloch, E. Halperin, R. Ravi, R. Schwartz, Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and practice. IEEE/ACM Trans. Comput. Biol. Bioinf. 4(4), 561–571 (2007)
CrossRef
Google Scholar
A. Subramanian, S. Shackney, R. Schwartz, Inference of tumor phylogenies from genomic assays on heterogeneous samples. J. Biomed. Biotechnol. 2012, 1–16 (2012)
Google Scholar
W.T. Tutte, An algorithm for determining whether a given binary matroid is graphic. Proc. Am. Math. Soc. 11(6), 905–917 (1960)
MathSciNet
Google Scholar
J. Zheng, I.B. Rogozin, E.V. Koonin, T.M. Przytycka, Support for the Coelomata clade of animals from a rigorous analysis of the pattern of intron conservation. Mol. Biol. Evol. 24(11), 2583–2592 (2007)
CrossRef
Google Scholar
E. Zotenko, K.S. Guimarães, R. Jothi, T.M. Przytycka, Decomposition of overlapping protein complexes: a graph theoretical method for analyzing static and dynamic protein associations. Algorithms Mol. Biol. 7(1), 1–11 (2006)
Google Scholar