Abstract
The interior of a cell is a crowded and fluctuating environment where DNA and other biomolecules are both highly constrained and subject to many mechanical forces. The extensive compaction of DNA in living cells is a challenge to many critical biological functions. An evolutionary solution to this challenge may be the juxtaposition of cis-acting elements such that multimeric protein complexes simultaneously interact with two or more protein-binding sites. This mode of biological activity involves the formation of looped DNA structures, which, by themselves, are thermodynamically unfavorable. Our knowledge about the roles of DNA bending, twisting, and their respective energetics in DNA looping has come mainly from analyses of ligase-dependent DNA cyclization experiments, which are quantitatively described by the Jacobson–Stockmayer, or J, factor. In this chapter, we discuss a novel quantitative approach to measuring the probability of DNA loop formation in solution using ensemble Förster resonance energy transfer (FRET) measurements of intramolecular and intermolecular Cre-recombination kinetics. Because the mechanism of Cre recombinase does not conform to a simple kinetic scheme, we employ numerical methods to extract rate constants for fundamental steps that pertain to Cre-mediated loop closure.
Keywords
- Extract Rate Constant
- Intermolecular Reaction
- Transcription Factor Interaction
- Intramolecular Recombination
- Repeat loxP Site
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options






References
Y. Zhang, D.M. Crothers, Proc. Natl. Acad. Sci. U. S. A. 100, 3161–3166 (2003)
T. Förster, Z. Naturforsch. A. 4(7) (1949)
R.E. Dale, J. Eisinger, Biopolymers 13, 1573–1605 (1974)
R.E. Dale, J. Eisinger, W.E. Blumberg, Biophys. J. 26, 161–193 (1979)
D. Badali, C.C. Gradinaru, J. Chem. Phys. 134, 225102 (2011)
R.D. Mitra, C.M. Silva, D.C. Youvan, Gene 173, 13–17 (1996)
R. Day, Mol. Endocrinol. 12, 1410–1419 (1998)
B. Treutlein, A. Muschielok, J. Andrecka, A. Jawhari, C. Buchen, D. Kostrewa, F. Hog, P. Cramer, J. Michaelis, Mol. Cell 46, 136–146 (2012)
S.M. Miick, R.S. Fee, D.P. Millar, W.J. Chazin, Proc. Natl. Acad. Sci. U. S. A. 94, 9080–9084 (1997)
A.K. Wozniak, G.F. Schroder, H. Grubmuller, C.A. Seidel, F. Oesterhelt, Proc. Natl. Acad. Sci. U. S. A. 105, 18337–18342 (2008)
S.A. McKinney, A.D. Freeman, D.M. Lilley, T. Ha, Proc. Natl. Acad. Sci. U. S. A. 102, 5715–5720 (2005)
E. Tan, T.J. Wilson, M.K. Nahas, R.M. Clegg, D.M. Lilley, T. Ha, Proc. Natl. Acad. Sci. U. S. A.100, 9308–9313 (2003)
M. Bussiek, K. Toth, N. Schwarz, J. Langowski, Biochemistry 45, 10838–10846 (2006)
C.L. White, K. Luger, J. Mol. Biol. 342, 1391–1402 (2004)
M. Tomschik, K. van Holde, J. Zlatanova, J. Fluoresc. 19, 53–62 (2009)
C. Bonisch, K. Schneider, S. Punzeler, S.M. Wiedemann, C. Bielmeier, M. Bocola, H.C. Eberl, W. Kuegel, J. Neumann, E. Kremmer, H. Leonhardt, M. Mann, J. Michaelis, L. Schermelleh, S.B. Hake, Nucleic Acids Res. 40, 5951–5964 (2012)
R. Zhou, T. Ha, Methods Mol. Biol. 922, 85–100 (2012)
S.F. Singleton, J. Xiao, Biopolymers 61, 145–158 (2001)
M. Margittai, J. Widengren, E. Schweinberger, G.F. Schroder, S. Felekyan, E. Haustein, M. Konig, D. Fasshauer, H. Grubmuller, R. Jahn, C.A. Seidel, Proc. Natl. Acad. Sci. U. S. A. 100, 15516–15521 (2003)
T. Ha, A.G. Kozlov, T.M. Lohman, Annu. Rev. Biophys. 41, 295–319 (2012)
W.M. Stark, D.J. Sherratt, M.R. Boocock, Cell 58, 779–790 (1989)
S.M. Lewis, Adv. Immunol. 56, 27–150 (1994)
D.J. Sherratt, L.K. Arciszewska, G. Blakely, S. Colloms, K. Grant, N. Leslie, R. McCulloch, Philos. Trans. R. Soc. Lond. B Biol. Sci. 347, 37–42 (1995)
B. Hallet, D.J. Sherratt, FEMS Microbiol. Rev. 21, 157–178 (1997)
R. Oh-McGinnis, M.J. Jones, L. Lefebvre, Brief. Funct. Genomics 9, 281–293 (2010)
A. Landy, Annu. Rev. Biochem. 58, 913–949 (1989)
J.R. Scott, Virology 36, 564–574 (1968)
N. Sternberg, Cold Spring Harb. Symp. Quant. Biol. 43(Pt 2), 1143–1146 (1979)
N. Sternberg, D. Hamilton, S. Austin, M. Yarmolinsky, R. Hoess, Cold Spring Harb. Symp. Quant. Biol. 45(Pt 1), 297–309 (1981)
C.H. Ma, A.H. Kachroo, A. Macieszak, T.Y. Chen, P. Guga, M. Jayaram, PLoS One 4, e7248 (2009)
D.N. Gopaul, F. Guo, G.D. Van Duyne, EMBO J 17, 4175–4187 (1998)
K. Ghosh, G.D. Van Duyne, Methods 28, 374–383 (2002)
A.A. Vetcher, A.Y. Lushnikov, J. Navarra-Madsen, R.G. Scharein, Y.L. Lyubchenko, I.K. Darcy, S.D. Levene, J. Mol. Biol. 357, 1089–1104 (2006)
F. Guo, D.N. Gopaul, G.D. van Duyne, Nature 389, 40–46 (1997)
F. Guo, D.N. Gopaul, G.D. Van Duyne, Proc. Natl. Acad. Sci. U. S. A. 96, 7143–7148 (1999)
E. Ennifar, J.E. Meyer, F. Buchholz, A.F. Stewart, D. Suck, Nucleic Acids Res. 31, 5449–5460 (2003)
Y. Chen, U. Narendra, E.L. Iype, M.M. Cox, A.P. Rice, Mol. Cell 6, 885–897 (2000)
T. Biswas, H. Aihara, M. Radman-Livaja, D. Filman, A. Landy, T. Ellenberger, Nature 435, 1059–1066 (2005)
G.D. Van Duyne, Annu. Rev. Biophys. Biomol. Struct. 30, 87–104 (2001)
R.H. Hoess, A. Wierzbicki, K. Abremski, Nucleic Acids Res. 14, 2287–2300 (1986)
I. Grainge, S. Pathania, A. Vologodskii, R.M. Harshey, M. Jayaram, J. Mol. Biol. 320, 515–527 (2002)
D. Shore, J. Langowski, R.L. Baldwin, Proc. Natl. Acad. Sci. U. S. A. 78, 4833–4837 (1981)
D.M. Crothers, J. Drak, J.D. Kahn, S.D. Levene, Methods Enzymol. 212, 3–29 (1992)
Q. Du, C. Smith, N. Shiffeldrim, M. Vologodskaia, A. Vologodskii, Proc. Natl. Acad. Sci. U. S. A.102, 5397–5402 (2005)
T.E. Cloutier, J. Widom, Mol. Cell 14, 355–362 (2004)
S.D. Levene, S.M. Giovan, A. Hanke, M.J. Shoura, Biochem. Soc. Trans. 41, 513–518 (2013)
Y. Zhang, A.E. McEwen, D.M. Crothers, S.D. Levene, Biophys. J. 90, 1903–1912 (2006)
R.E. Dickerson, J. Biomol. Struct. Dyn. 6, 627–634 (1989)
M.J. Shoura, A.A. Vetcher, S.M. Giovan, F. Bardai, A. Bharadwaj, M.R. Kesinger, S.D. Levene, Nucleic Acids Res. 40, 7452–7464 (2012)
L. Ringrose, V. Lounnas, L. Ehrlich, F. Buchholz, R. Wade, A.F. Stewart, J. Mol. Biol. 284, 363–384 (1998)
K. Rippe, M. Guthold, P.H. von Hippel, C. Bustamante, J. Mol. Biol. 270, 125–138 (1997)
V.A. Bloomfield, D.M. Crothers, I.J. Tinoco, Nucleic acids: structures, properties and functions (University Science Books, Herndon, 2000)
L. Finzi, J. Gelles, Science 267, 378–380 (1995)
J. Muller, S. Oehler, B. Muller-Hill, J. Mol. Biol. 257, 21–29 (1996)
T.M. Dunn, S. Hahn, S. Ogden, R.F. Schleif, Proc. Natl. Acad. Sci. U. S. A. 81, 5017–5020 (1984)
E. de Wit, W. de Laat, Genes Dev. 26, 11–24 (2012)
Acknowledgments
We thank Andreas Hanke and Stefan Giovan for calculations of J theor. This work was supported by a grant from the NIH/NSF Joint Program in Mathematical Biology (DMS-0800929 from the National Science Foundation) to SDL.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Shoura, M.J., Levene, S.D. (2014). Understanding DNA Looping Through Cre-Recombination Kinetics. In: Jonoska, N., Saito, M. (eds) Discrete and Topological Models in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40193-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-40193-0_19
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40192-3
Online ISBN: 978-3-642-40193-0
eBook Packages: Computer ScienceComputer Science (R0)