Skip to main content

Understanding DNA Looping Through Cre-Recombination Kinetics

Part of the Natural Computing Series book series (NCS)

Abstract

The interior of a cell is a crowded and fluctuating environment where DNA and other biomolecules are both highly constrained and subject to many mechanical forces. The extensive compaction of DNA in living cells is a challenge to many critical biological functions. An evolutionary solution to this challenge may be the juxtaposition of cis-acting elements such that multimeric protein complexes simultaneously interact with two or more protein-binding sites. This mode of biological activity involves the formation of looped DNA structures, which, by themselves, are thermodynamically unfavorable. Our knowledge about the roles of DNA bending, twisting, and their respective energetics in DNA looping has come mainly from analyses of ligase-dependent DNA cyclization experiments, which are quantitatively described by the Jacobson–Stockmayer, or J, factor. In this chapter, we discuss a novel quantitative approach to measuring the probability of DNA loop formation in solution using ensemble Förster resonance energy transfer (FRET) measurements of intramolecular and intermolecular Cre-recombination kinetics. Because the mechanism of Cre recombinase does not conform to a simple kinetic scheme, we employ numerical methods to extract rate constants for fundamental steps that pertain to Cre-mediated loop closure.

Keywords

  • Extract Rate Constant
  • Intermolecular Reaction
  • Transcription Factor Interaction
  • Intramolecular Recombination
  • Repeat loxP Site

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40193-0_19
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-40193-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Y. Zhang, D.M. Crothers, Proc. Natl. Acad. Sci. U. S. A. 100, 3161–3166 (2003)

    CrossRef  Google Scholar 

  2. T. Förster, Z. Naturforsch. A. 4(7) (1949)

    Google Scholar 

  3. R.E. Dale, J. Eisinger, Biopolymers 13, 1573–1605 (1974)

    CrossRef  Google Scholar 

  4. R.E. Dale, J. Eisinger, W.E. Blumberg, Biophys. J. 26, 161–193 (1979)

    CrossRef  Google Scholar 

  5. D. Badali, C.C. Gradinaru, J. Chem. Phys. 134, 225102 (2011)

    CrossRef  Google Scholar 

  6. R.D. Mitra, C.M. Silva, D.C. Youvan, Gene 173, 13–17 (1996)

    CrossRef  Google Scholar 

  7. R. Day, Mol. Endocrinol. 12, 1410–1419 (1998)

    CrossRef  Google Scholar 

  8. B. Treutlein, A. Muschielok, J. Andrecka, A. Jawhari, C. Buchen, D. Kostrewa, F. Hog, P. Cramer, J. Michaelis, Mol. Cell 46, 136–146 (2012)

    CrossRef  Google Scholar 

  9. S.M. Miick, R.S. Fee, D.P. Millar, W.J. Chazin, Proc. Natl. Acad. Sci. U. S. A. 94, 9080–9084 (1997)

    CrossRef  Google Scholar 

  10. A.K. Wozniak, G.F. Schroder, H. Grubmuller, C.A. Seidel, F. Oesterhelt, Proc. Natl. Acad. Sci. U. S. A. 105, 18337–18342 (2008)

    CrossRef  Google Scholar 

  11. S.A. McKinney, A.D. Freeman, D.M. Lilley, T. Ha, Proc. Natl. Acad. Sci. U. S. A. 102, 5715–5720 (2005)

    CrossRef  Google Scholar 

  12. E. Tan, T.J. Wilson, M.K. Nahas, R.M. Clegg, D.M. Lilley, T. Ha, Proc. Natl. Acad. Sci. U. S. A.100, 9308–9313 (2003)

    CrossRef  Google Scholar 

  13. M. Bussiek, K. Toth, N. Schwarz, J. Langowski, Biochemistry 45, 10838–10846 (2006)

    CrossRef  Google Scholar 

  14. C.L. White, K. Luger, J. Mol. Biol. 342, 1391–1402 (2004)

    CrossRef  Google Scholar 

  15. M. Tomschik, K. van Holde, J. Zlatanova, J. Fluoresc. 19, 53–62 (2009)

    CrossRef  Google Scholar 

  16. C. Bonisch, K. Schneider, S. Punzeler, S.M. Wiedemann, C. Bielmeier, M. Bocola, H.C. Eberl, W. Kuegel, J. Neumann, E. Kremmer, H. Leonhardt, M. Mann, J. Michaelis, L. Schermelleh, S.B. Hake, Nucleic Acids Res. 40, 5951–5964 (2012)

    CrossRef  Google Scholar 

  17. R. Zhou, T. Ha, Methods Mol. Biol. 922, 85–100 (2012)

    Google Scholar 

  18. S.F. Singleton, J. Xiao, Biopolymers 61, 145–158 (2001)

    CrossRef  Google Scholar 

  19. M. Margittai, J. Widengren, E. Schweinberger, G.F. Schroder, S. Felekyan, E. Haustein, M. Konig, D. Fasshauer, H. Grubmuller, R. Jahn, C.A. Seidel, Proc. Natl. Acad. Sci. U. S. A. 100, 15516–15521 (2003)

    CrossRef  Google Scholar 

  20. T. Ha, A.G. Kozlov, T.M. Lohman, Annu. Rev. Biophys. 41, 295–319 (2012)

    CrossRef  Google Scholar 

  21. W.M. Stark, D.J. Sherratt, M.R. Boocock, Cell 58, 779–790 (1989)

    CrossRef  Google Scholar 

  22. S.M. Lewis, Adv. Immunol. 56, 27–150 (1994)

    CrossRef  Google Scholar 

  23. D.J. Sherratt, L.K. Arciszewska, G. Blakely, S. Colloms, K. Grant, N. Leslie, R. McCulloch, Philos. Trans. R. Soc. Lond. B Biol. Sci. 347, 37–42 (1995)

    CrossRef  Google Scholar 

  24. B. Hallet, D.J. Sherratt, FEMS Microbiol. Rev. 21, 157–178 (1997)

    CrossRef  Google Scholar 

  25. R. Oh-McGinnis, M.J. Jones, L. Lefebvre, Brief. Funct. Genomics 9, 281–293 (2010)

    CrossRef  Google Scholar 

  26. A. Landy, Annu. Rev. Biochem. 58, 913–949 (1989)

    CrossRef  Google Scholar 

  27. J.R. Scott, Virology 36, 564–574 (1968)

    CrossRef  Google Scholar 

  28. N. Sternberg, Cold Spring Harb. Symp. Quant. Biol. 43(Pt 2), 1143–1146 (1979)

    CrossRef  MathSciNet  Google Scholar 

  29. N. Sternberg, D. Hamilton, S. Austin, M. Yarmolinsky, R. Hoess, Cold Spring Harb. Symp. Quant. Biol. 45(Pt 1), 297–309 (1981)

    CrossRef  Google Scholar 

  30. C.H. Ma, A.H. Kachroo, A. Macieszak, T.Y. Chen, P. Guga, M. Jayaram, PLoS One 4, e7248 (2009)

    CrossRef  Google Scholar 

  31. D.N. Gopaul, F. Guo, G.D. Van Duyne, EMBO J 17, 4175–4187 (1998)

    CrossRef  Google Scholar 

  32. K. Ghosh, G.D. Van Duyne, Methods 28, 374–383 (2002)

    CrossRef  Google Scholar 

  33. A.A. Vetcher, A.Y. Lushnikov, J. Navarra-Madsen, R.G. Scharein, Y.L. Lyubchenko, I.K. Darcy, S.D. Levene, J. Mol. Biol. 357, 1089–1104 (2006)

    CrossRef  Google Scholar 

  34. F. Guo, D.N. Gopaul, G.D. van Duyne, Nature 389, 40–46 (1997)

    CrossRef  Google Scholar 

  35. F. Guo, D.N. Gopaul, G.D. Van Duyne, Proc. Natl. Acad. Sci. U. S. A. 96, 7143–7148 (1999)

    CrossRef  Google Scholar 

  36. E. Ennifar, J.E. Meyer, F. Buchholz, A.F. Stewart, D. Suck, Nucleic Acids Res. 31, 5449–5460 (2003)

    CrossRef  Google Scholar 

  37. Y. Chen, U. Narendra, E.L. Iype, M.M. Cox, A.P. Rice, Mol. Cell 6, 885–897 (2000)

    Google Scholar 

  38. T. Biswas, H. Aihara, M. Radman-Livaja, D. Filman, A. Landy, T. Ellenberger, Nature 435, 1059–1066 (2005)

    CrossRef  Google Scholar 

  39. G.D. Van Duyne, Annu. Rev. Biophys. Biomol. Struct. 30, 87–104 (2001)

    CrossRef  Google Scholar 

  40. R.H. Hoess, A. Wierzbicki, K. Abremski, Nucleic Acids Res. 14, 2287–2300 (1986)

    CrossRef  Google Scholar 

  41. I. Grainge, S. Pathania, A. Vologodskii, R.M. Harshey, M. Jayaram, J. Mol. Biol. 320, 515–527 (2002)

    CrossRef  Google Scholar 

  42. D. Shore, J. Langowski, R.L. Baldwin, Proc. Natl. Acad. Sci. U. S. A. 78, 4833–4837 (1981)

    CrossRef  Google Scholar 

  43. D.M. Crothers, J. Drak, J.D. Kahn, S.D. Levene, Methods Enzymol. 212, 3–29 (1992)

    Google Scholar 

  44. Q. Du, C. Smith, N. Shiffeldrim, M. Vologodskaia, A. Vologodskii, Proc. Natl. Acad. Sci. U. S. A.102, 5397–5402 (2005)

    CrossRef  Google Scholar 

  45. T.E. Cloutier, J. Widom, Mol. Cell 14, 355–362 (2004)

    CrossRef  Google Scholar 

  46. S.D. Levene, S.M. Giovan, A. Hanke, M.J. Shoura, Biochem. Soc. Trans. 41, 513–518 (2013)

    CrossRef  Google Scholar 

  47. Y. Zhang, A.E. McEwen, D.M. Crothers, S.D. Levene, Biophys. J. 90, 1903–1912 (2006)

    CrossRef  Google Scholar 

  48. R.E. Dickerson, J. Biomol. Struct. Dyn. 6, 627–634 (1989)

    CrossRef  Google Scholar 

  49. M.J. Shoura, A.A. Vetcher, S.M. Giovan, F. Bardai, A. Bharadwaj, M.R. Kesinger, S.D. Levene, Nucleic Acids Res. 40, 7452–7464 (2012)

    CrossRef  Google Scholar 

  50. L. Ringrose, V. Lounnas, L. Ehrlich, F. Buchholz, R. Wade, A.F. Stewart, J. Mol. Biol. 284, 363–384 (1998)

    CrossRef  Google Scholar 

  51. K. Rippe, M. Guthold, P.H. von Hippel, C. Bustamante, J. Mol. Biol. 270, 125–138 (1997)

    CrossRef  Google Scholar 

  52. V.A. Bloomfield, D.M. Crothers, I.J. Tinoco, Nucleic acids: structures, properties and functions (University Science Books, Herndon, 2000)

    Google Scholar 

  53. L. Finzi, J. Gelles, Science 267, 378–380 (1995)

    CrossRef  Google Scholar 

  54. J. Muller, S. Oehler, B. Muller-Hill, J. Mol. Biol. 257, 21–29 (1996)

    CrossRef  Google Scholar 

  55. T.M. Dunn, S. Hahn, S. Ogden, R.F. Schleif, Proc. Natl. Acad. Sci. U. S. A. 81, 5017–5020 (1984)

    CrossRef  Google Scholar 

  56. E. de Wit, W. de Laat, Genes Dev. 26, 11–24 (2012)

    CrossRef  Google Scholar 

Download references

Acknowledgments

We thank Andreas Hanke and Stefan Giovan for calculations of J theor. This work was supported by a grant from the NIH/NSF Joint Program in Mathematical Biology (DMS-0800929 from the National Science Foundation) to SDL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massa J. Shoura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shoura, M.J., Levene, S.D. (2014). Understanding DNA Looping Through Cre-Recombination Kinetics. In: Jonoska, N., Saito, M. (eds) Discrete and Topological Models in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40193-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40193-0_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40192-3

  • Online ISBN: 978-3-642-40193-0

  • eBook Packages: Computer ScienceComputer Science (R0)