Skip to main content

Reactions Mediated by Topoisomerases and Other Enzymes: Modelling Localised DNA Transformations

  • Chapter
  • First Online:
Discrete and Topological Models in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

  • 2065 Accesses

Abstract

Many proteins cleave and reseal DNA molecules in precisely orchestrated ways. Modelling these reactions has often relied on the axis of the DNA double helix being circular, so these cut-and-seal mechanisms can be tracked by corresponding changes in the knot type of the DNA axis. However, when the DNA molecule is linear, or the protein action does not manifest itself as a change in knot type, or the knot types are not 4-plats, these knot-theoretic models are less germane. We thus give a taxonomy of local DNA axis configurations. More precisely, we characterise all rational tangles obtained from a given rational tangle via a rational-subtangle replacement. This classification is then endowed biologically with a distance that determines how many enzyme-mediated reactions of a particular type are needed to proceed from one local DNA conformation to another, or indeed if it is even possible. We conclude by discussing a variety of biological applications of this categorisation, including reactions mediated by type II topoisomerase, site-specific recombinase and transposase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Berge, The knots in \({D}^{2} \times {S}^{1}\) which have nontrivial Dehn surgeries that yield \({D}^{2} \times {S}^{1}\). Topol. Appl. 38(1), 1–19 (1991). MR MR1093862 (92d:57005)

    Google Scholar 

  2. T. Biswas, H. Aihara, M. Radman-Livaja, D. Filman, A. Landy, T. Ellenberger, A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 435, 1059–1066 (2005)

    Article  Google Scholar 

  3. D. Buck, E. Flapan, Predicting knot or catenane type of site-specific recombination products. J. Mol. Biol. 374, 1186–1199 (2007)

    Article  Google Scholar 

  4. D. Buck, DNA topology, in Applications of Knot Theory, ed. by D. Buck, E. Flapan. Proceedings of Symposia in Applied Mathematics, San Diego (AMS, Providence, 2008), pp. 1–43

    Google Scholar 

  5. D. Buck, K.L. Baker, Taxonomy of DNA conformations within complex nucleoprotein assemblies. Prog. Theor. Phys. 191, 55–65 (2011)

    Article  Google Scholar 

  6. D. Buck, K.L. Baker, The classification of rational subtangle replacements between rational tangles. Algebr. Geom. Topol. 13, 1413–1463 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Buck, E. Flapan, A topological characterization of knots and links arising from site-specific recombination. J. Phys. A 40(41), 12377–12395 (2007). MR 2394909 (2010h:92064)

    Google Scholar 

  8. D. Buck, M. Mauricio, Connect sum of lens spaces surgeries: application to Hin recombination. Math. Proc. Camb. Philos. Soc. 150(3), 505–525 (2011). MR 2784772

    Google Scholar 

  9. D. Buck, K. Valencia, Characterization of knots and links arising from site-specific recombination on twist knots. J. Phys. A 44(41), 45002–45038 (2011). MR MR2394909 (2010h:92064)

    Google Scholar 

  10. D. Buck, C. Verjovsky Marcotte, Tangle solutions for a family of DNA-rearranging proteins. Math. Proc. Camb. Philos. Soc. 139(1), 59–80 (2005). MR 2155505 (2006j:57010)

    Google Scholar 

  11. D. Buck, C. Verjovsky Marcotte, Classification of tangle solutions for integrases, a protein family that changes DNA topology. J. Knot Theory Ramif. 16(8), 969–995 (2007). MR 2364885 (2009f:57006)

    Google Scholar 

  12. H. Cabrera-Ibarra, D.A. Lizárraga-Navarro, An algorithm based on 3-braids to solve tangle equations arising in the action of Gin DNA invertase. Appl. Math. Comput. 216, 95–106 (2010)

    Article  MathSciNet  Google Scholar 

  13. H. Cabrera-Ibarra, D.A. Lizárraga-Navarro, Braid solutions to the action of the Gin enzyme. J. Knot Theory Ramif. 19, 1051–1074 (2010)

    Article  MATH  Google Scholar 

  14. M. Culler, C.McA. Gordon, J. Luecke, P.B. Shalen, Dehn surgery on knots. Ann. Math. (2) 125(2), 237–300 (1987). MR MR881270 (88a:57026)

    Google Scholar 

  15. I.K. Darcy, W. De Sumners, Rational tangle distances on knots and links. Math. Proc. Camb. Philos. Soc. 128(3), 497–510 (2000). MR MR1744106 (2000j:57008)

    Google Scholar 

  16. C. Ernst, Tangle equations. J. Knot Theory Ramif. 5(2), 145–159 (1996). MR MR1395775 (97h:57016)

    Google Scholar 

  17. C. Ernst, D.W. Sumners, A calculus for rational tangles: applications to DNA recombination. Math. Proc. Camb. Philos. Soc. 108(3), 489–515 (1990). MR MR1068451 (92f:92024)

    Google Scholar 

  18. D. Gabai, Surgery on knots in solid tori. Topology 28(1), 1–6 (1989). MR MR991095 (90h:57005)

    Google Scholar 

  19. I. Grainge, D. Buck, M. Jayaram, Geometry of site alignment during Int family recombination: antiparallel synapsis by the Flp recombinase. J. Mol. Biol. 298, 749–764 (2000)

    Article  Google Scholar 

  20. J. Greene, The lens space realization problem. arXiv:1010.6257 [math.GT]

    Google Scholar 

  21. N.D. Grindley, K.L. Whiteson, P.A. Rice, Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75, 567–605 (2006)

    Article  Google Scholar 

  22. R.A. Keenholtz, S.J. Rowland, M.R. Boocock, W.M. Stark, P.A. Rice, Structural basis for catalytic activation of a serine recombinase. Structure 19(6), 799–809 (2011)

    Article  Google Scholar 

  23. P. Lisca, Lens spaces, rational balls and the ribbon conjecture. Geom. Topol. 11, 429–472 (2007). MR 2302495 (2008a:57008)

    Google Scholar 

  24. Z. Liu, R.W. Deibler, H.S. Chan, L. Zechiedrich, The why and how of DNA unlinking. Nucleic Acids Res. 37, 661–671 (2009)

    Article  Google Scholar 

  25. J.M. Montesinos, Surgery on links and double branched covers of S 3. Knots, groups, and 3-manifolds (Papers dedicated to the memory of R.H. Fox) (Princeton University Press, Princeton, 1975), pp. 227–259. Ann. Math. Stud. No. 84. MR MR0380802 (52 #1699)

    Google Scholar 

  26. L. Moser, Elementary surgery along a torus knot. Pac. J. Math. 38, 737–745 (1971). MR MR0383406 (52 #4287)

    Google Scholar 

  27. K.W. Mouw, S.J. Rowland, M.M. Gajjar, M.R. Boocock, W.M. Stark, P.A. Rice, Architecture of a serine recombinase-dna regulatory complex. Mol. Cell 30(2), 145–155 (2008)

    Article  Google Scholar 

  28. F.J. Olorunniji, D.E. Buck, S.D. Colloms, A.R. McEwan, M.C. Smith, W.M. Stark, S.J. Rosser, Gated rotation mechanism of site-specific recombination by \(\Phi \) C31 integrase. Proc. Natl. Acad. Sci. U.S.A. 109(48), 19661–19666 (2012)

    Article  Google Scholar 

  29. L. Paoluzzi, On hyperbolic type involutions. Rend. Istit. Mat. Univ. Trieste 32(2001, suppl. 1), 221–256 (2002). Dedicated to the memory of Marco Reni. MR 1893400 (2003a:57014)

    Google Scholar 

  30. M.D. Stone, C.D. Hardy, N.J. Crisona, N.R. Cozzarelli, Disentangling DNA during replication: a tale of two strands. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 39–47 (2004)

    Article  Google Scholar 

  31. I. Torisu, The determination of the pairs of two-bridge knots or links with Gordian distance one. Proc. Am. Math. Soc. 126(5), 1565–1571 (1998). MR 1425140 (98j:57020)

    Google Scholar 

  32. K. Valencia, D. Buck, Predicting knot and catenane type of products of site-specific recombination on twist knot substrates. J. Mol. Biol. 411(2), 350–367 (2011)

    Article  Google Scholar 

  33. A. Vologodskii, Theoretical models of DNA topology simplification by type IIA DNA topoisomerases. Nucleic Acids Res. 10, 3125–3133 (2009)

    Article  Google Scholar 

  34. J.C. Wang, Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to express many thanks to Ken Baker, who co-authored the topological proofs that were applied to the biological systems described above, and who provided several of the figures. Thanks also to the reviewers for their careful reading and insightful comments. Also, thanks to the UK’s Engineering and Physical Sciences Research Council, which has generously supported the author through grants EP/H0313671, EP/G0395851 and EP/J1075308, and to the London Mathematical Society, which has supported her research through two LMS Scheme 2 Awards. Finally, much gratitude to Natasha Jonoska, Alessandra Carbone, Katarzyna Rejniak, Masahico Saito and Reidun Twarock for organising the stimulating and enjoyable Discrete and Topological Models in Molecular Biology Conference, as well as for inviting this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy Buck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buck, D. (2014). Reactions Mediated by Topoisomerases and Other Enzymes: Modelling Localised DNA Transformations. In: Jonoska, N., Saito, M. (eds) Discrete and Topological Models in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40193-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40193-0_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40192-3

  • Online ISBN: 978-3-642-40193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics