Skip to main content

A Relational Trace Logic for Vector Addition Systems with Application to Context-Freeness

  • Conference paper
CONCUR 2013 – Concurrency Theory (CONCUR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8052))

Included in the following conference series:

Abstract

We introduce a logic for specifying trace properties of vector addition systems (VAS). This logic can express linear relations among pumping segments occurring in a trace. Given a VAS and a formula in the logic, we investigate the question whether the VAS contains a trace satisfying the formula. Our main contribution is an exponential space upper bound for this problem. The proof is based on a small model property for the logic. Compared to similar logics that are solvable in exponential space, a distinguishing feature of our logic is its ability to express non-context-freeness of the trace language of a VAS. This allows us to show that the context-freeness problem for VAS, whose complexity was not established so far, is ExpSpace-complete.

This work was supported by the ANR project ReacHard (ANR-11-BS02-001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atig, M.F., Habermehl, P.: On Yen’s path logic for Petri nets. Int. J. Found. Comput. Sci. 22(4), 783–799 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blockelet, M., Schmitz, S.: Model checking coverability graphs of vector addition systems. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 108–119. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Demri, S.: On selective unboundedness of VASS. In: Proc. INFINITY. EPTCS, vol. 39, pp. 1–15 (2010)

    Google Scholar 

  4. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bulletin of the EATCS 52, 244–262 (1994)

    Google Scholar 

  5. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sciences 3(2), 147–195 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: Proc. STOC, pp. 267–281. ACM (1982)

    Google Scholar 

  7. Leroux, J.: Vector addition system reversible reachability problem. Logical Methods in Computer Science 9(1) (2013)

    Google Scholar 

  8. Leroux, J., Penelle, V., Sutre, G.: On the context-freeness problem for vector addition systems. In: Proc. LICS. IEEE (to appear, 2013)

    Google Scholar 

  9. Lipton, R.J.: The reachability problem requires exponential space. Technical Report 62, Yale University (1976)

    Google Scholar 

  10. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Proc. STOC, pp. 238–246. ACM (1981)

    Google Scholar 

  11. Mayr, E.W., Meyer, A.R.: The complexity of the finite containment problem for Petri nets. J. ACM 28(3), 561–576 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pottier, L.: Minimal solutions of linear diophantine systems: Bounds and algorithms. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 162–173. Springer, Heidelberg (1991)

    Google Scholar 

  13. Rackoff, C.: The covering and boundedness problems for vector addition systems. Theoretical Computer Science 6(2), 223–231 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schwer, S.R.: The context-freeness of the languages associated with vector addition systems is decidable. Theor. Comput. Sci. 98(2), 199–247 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems in Petri nets. Acta Inf. 21, 643–674 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Valk, R., Vidal-Naquet, G.: Petri nets and regular languages. Journal of Computer and System Sciences 23(3), 299–325 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yen, H.-C.: A unified approach for deciding the existence of certain Petri net paths. Inf. Comput. 96(1), 119–137 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leroux, J., Praveen, M., Sutre, G. (2013). A Relational Trace Logic for Vector Addition Systems with Application to Context-Freeness. In: D’Argenio, P.R., Melgratti, H. (eds) CONCUR 2013 – Concurrency Theory. CONCUR 2013. Lecture Notes in Computer Science, vol 8052. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40184-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40184-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40183-1

  • Online ISBN: 978-3-642-40184-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics