Skip to main content

Slice, Mine and Dice: Complexity-Aware Automated Discovery of Business Process Models

  • Conference paper
Business Process Management

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8094))

Abstract

Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bose, R.P.J.C.: Process Mining in the Large: Preprocessing, Discovery, and Diagnostics. PhD thesis, Eindhoven University of Technology, Eindhoven (2012)

    Google Scholar 

  2. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved patterns: Towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009 Workshops. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg (2010)

    Google Scholar 

  3. Bose, R.P.J.C., Verbeek, E.H.M.W., van der Aalst, W.M.P.: Discovering hierarchical process models using prom. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107, pp. 33–48. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. de Medeiros, A.K.A., Guzzo, A., Greco, G., van der Aalst, W.M.P., Weijters, A.J.M.M., van Dongen, B.F., Saccà, D.: Process mining based on clustering: A quest for precision. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 17–29. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

    Article  Google Scholar 

  6. Dumas, M., García-Bañuelos, L., La Rosa, M., Uba, R.: Fast detection of exact clones in business process model repositories. Inf. Syst. 38(4), 619–633 (2012)

    Article  Google Scholar 

  7. Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa, M., ter Hofstede, A.H.M.: Approximate clone detection in repositories of business process models. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 302–318. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data Knowl. Eng. 67(1), 74–102 (2008)

    Article  Google Scholar 

  9. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

    Article  Google Scholar 

  10. La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas, M., García-Bañuelos, L.: APROMORE: An Advanced Process Model Repository. Expert Syst. Appl. 38(6) (2011)

    Google Scholar 

  11. Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understandable? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Mendling, J., Sánchez-González, L., García, F., La Rosa, M.: Thresholds for error probability measures of business process models. J. Syst. Software 85(5), 1188–1197 (2012)

    Article  Google Scholar 

  13. Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of business process models. IEEE T. Syst. Man Cy. A 41(3), 449–462 (2011)

    Article  Google Scholar 

  14. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: An approach to business process consolidation. ACM T. Softw. Eng. Meth. 22(2) (2013)

    Google Scholar 

  15. Song, M., Günther, C.W., van der Aalst, W.M.P.: Improving process mining with trace clustering. J. Korean Inst. of Industrial Engineers 34(4), 460–469 (2008)

    Google Scholar 

  16. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)

    Google Scholar 

  17. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)

    Google Scholar 

  18. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundam. Inform. 94(3-4), 387–412 (2009)

    Google Scholar 

  19. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data Knowl. Eng. 68(9), 793–818 (2009)

    Article  Google Scholar 

  20. Veiga, G.M., Ferreira, D.R.: Understanding spaghetti models with sequence clustering for prom. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 92–103. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012)

    Article  Google Scholar 

  22. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (fhm). In: CIDM, pp. 310–317. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa, M. (2013). Slice, Mine and Dice: Complexity-Aware Automated Discovery of Business Process Models. In: Daniel, F., Wang, J., Weber, B. (eds) Business Process Management. Lecture Notes in Computer Science, vol 8094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40176-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40176-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40175-6

  • Online ISBN: 978-3-642-40176-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics