Abstract
While the maturity of process mining algorithms increases and more process mining tools enter the market, process mining projects still face the problem of different levels of abstraction when comparing events with modeled business activities. Current approaches for event log abstraction most often try to abstract from the events in an automated way which does not capture the required domain knowledge to fit business activities. This can lead to misinterpretation of discovered process models. We developed an approach which aims to abstract an event log to the same abstraction level which is needed by the business. We use domain knowledge extracted from existing process documentation in order to automatically match events and activities. Our proposed abstraction approach is able to deal with n:m relations between events and activities and also supports concurrency. We evaluated our approach in a case study with a German IT outsourcing company.
Keywords
- Process Mining
- Abstraction
- Event Mapping
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st edn. Springer Publishing Company, Incorporated (2011)
Baier, T., Mendling, J.: Bridging abstraction layers in process mining: Event to activity mapping. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 109–123. Springer, Heidelberg (2013)
Cannon, D., Wheeldon, D.: ITIL – Service Operation. TSO (May 2007)
Li, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Mining context-dependent and interactive business process maps using execution patterns. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 109–121. Springer, Heidelberg (2011)
Scheer, A.-W.: ARIS - Modellierungsmethoden, Metamodelle, Anwendungen, 4th edn. Springer (2001)
Jurafsky, D., Martin, J.: Speech and language processing. Prentice Hall (2008)
Toutanova, K., Manning, C.D.: Enriching the Knowledge Sources Used in a Maximum Entropy Part-of-Speech Tagger. EMNLP, 63–70 (2000)
Braschler, M., Ripplinger, B.: How Effective is Stemming and Decompounding for German Text Retrieval? Information Retrieval 7(3/4), 291–316 (2004)
Abels, S., Hahn, A.: Pre-processing Text for Web Information Retrieval Purposes by Splitting Compounds into their Morphemes. In: OSWIR 2005 (2005)
Pnueli, A.: The Temporal Logic of Programs. In: Foundations of Computer Science, pp. 46–57 (1977)
Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann (2005)
Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance analysis based on behavioural profiles. Information Systems 36(7), 1009–1025 (2011)
Günther, C.W., van der Aalst, W.M.P.: Mining activity clusters from low-level event logs. In: BETA Working Paper Series, vol. WP 165, Eindhoven University of Technology (2006)
Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010)
Smirnov, S., Reijers, H.A., Weske, M., Nugteren, T.: Business process model abstraction: a definition, catalog, and survey. Distributed and Parallel Databases 30(1), 63–99 (2012)
Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data & Knowledge Engineering 67(1), 74–102 (2008)
Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining: adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)
Polyvyanyy, A., Smirnov, S., Weske, M.: Process Model Abstraction: A Slider Approach. In: EDOC, pp. 325–331. IEEE (2008)
Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled manner. Inf. Syst. 38(4), 585–605 (2013)
Bose, R.P.J.C., van der Aalst, W.M.P.: Process diagnostics using trace alignment: Opportunities, issues, and challenges. Inf. Syst. 37(2), 117–141 (2012)
Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of Business Process Models: Metrics and Evaluation. Information Systems 36(2), 498–516 (2011)
Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP Framework: Identification of Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)
Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.: Probabilistic optimization of semantic process model matching. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012)
Euzenat, J., Shvaiko, P.: Ontology Matching. Springer (2007)
Weidlich, M., Dijkman, R., Weske, M.: Behaviour Equivalence and Compatibility of Business Process Models with Complex Correspondences. ComJnl (2012)
Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Improving the recall of process model matching. In: Business Process Management - 11th International Conference, BPM 2013, Proceedings. LNCS. Springer (2013)
Weidlich, M., Sagi, T., Leopold, H., Gal, A., Mendling, J.: Making process model matching work. In: Business Process Management - 11th International Conference, BPM 2013, Proceedings. LNCS. Springer (2013)
Pérez-Castillo, R., Weber, B., de Guzmán, I.G.R., Piattini, M., Pinggera, J.: Assessing event correlation in non-process-aware information systems. Software and Systems Modeling, 1–23 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baier, T., Mendling, J. (2013). Bridging Abstraction Layers in Process Mining by Automated Matching of Events and Activities. In: Daniel, F., Wang, J., Weber, B. (eds) Business Process Management. Lecture Notes in Computer Science, vol 8094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40176-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-40176-3_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40175-6
Online ISBN: 978-3-642-40176-3
eBook Packages: Computer ScienceComputer Science (R0)