Computational Aeroacoustics

  • Manfred KaltenbacherEmail author


A large amount of the total noise in our daily lives is generated by turbulent flows (e.g., airplanes, cars, air conditioning systems, etc.).


Source Term Direct Numerical Simulation Acoustic Field Acoustic Pressure Discontinuous Galerkin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.K.W. Tam, Computational aeroacoustics. AIAA J. 33, 1788–1796 (1995)CrossRefzbMATHGoogle Scholar
  2. 2.
    J.C. Hardin, M.Y. Hussaini (eds.), Computational Aeroacoustics, ch. Computational Aeroacoustics for Low Mach Number Flows (Springer, New York, 1992), pp. 50–68Google Scholar
  3. 3.
    J.C. Hardin, M.Y. Hussaini (eds.), Computational Aeroacoustics, Ch. Regarding Numerical Considerations for Computational Aeroacoustics (Springer, New York, 1992), pp. 216–228Google Scholar
  4. 4.
    J.B. Freund, S.K. Lele, P. Moin, Direct numerical simulation of a Mach 1.92 turbulent jet and its sound field. AIAA J. 38, 2023–2031 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Uzun, A.S. Lyrintzis, G.A. Blaisdell, Coupling of Integral Acoustics Methods with LES for Jet Noise Prediction. Proceedings of AIAA Aerospace Sciences Meeting and Exhibit, no. 2004–0517, Reno, January 2004Google Scholar
  6. 6.
    P. Di Francescantonio, A new boundary integral formulation for the prediction of sound radiation. J. Sound Vib. 202(4), 491–509 (1997)CrossRefGoogle Scholar
  7. 7.
    K. Brentner, F. Farassat, An analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA J. 36(8), 1379–1386 (1998)CrossRefGoogle Scholar
  8. 8.
    F. Farassat, Acoustic radiation from rotating blades—the Kirchhoff method in aeroacoustics. J. Sound Vib. 239(4), 785–800 (2001)CrossRefGoogle Scholar
  9. 9.
    D. Lockard, J. Casper, Permeable Surface Corrections for Ffwocs Williams and Hawkings Integrals. Proceedings of 11th AIAA/CEAS Aeroacoustics Conference, Monterey, May 2005Google Scholar
  10. 10.
    A. Oberai, F. Ronaldkin, T. Hughes, Computational procedures for determining structural-acoustic response due to hydrodynamic sources. Comput. Methods Appl. Mech. Eng. 190, 345–361 (2000)CrossRefzbMATHGoogle Scholar
  11. 11.
    C. Bailly, D. Juvé, Numerical solution of acoustic propagation problems using linearized Euler equations, AIAA J. 38(1), 22–29 (2000)Google Scholar
  12. 12.
    M. Dumbser, C.-D. Munz, ADER discontinuous Galerkin schemes for aeroacoustics. Comptes Rendus Mecanique 333(9), 683–687 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    R. Ewert, W. Schröder, Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188, 365–398 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    C.D. Munz, M. Dumbser, S. Roller, Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature. J. Comput. Phys. 224, 352–364 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    A. Hüppe, M. Kaltenbacher, Spectral finite elements for computational aeroacoustics using acoustic pertrubation equations. J. Comput. Acoust. 20(2) (2012)Google Scholar
  16. 16.
    M. Kaltenbacher, M. Escobar, I. Ali, S. Becker, Numerical simulation of flow-induced noise using LES/SAS and Lighthill’s acoustics analogy. Int. J. Numer. Method Fluids 63(9), 1103–1122 (2010)zbMATHMathSciNetGoogle Scholar
  17. 17.
    J. Seo, Y. Moon, Linearized perturbed compressible equations for low Mach number aeroacoustics. J. Comput. Phys. 218(2), 702–719 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    M. Escobar, Finite Element Simulation of Flow-Induced Noise Applying Lighthill’s Acoustic Analogy (Universität Erlangen-Nürnberg, Ph.D., 2007)Google Scholar
  19. 19.
    W. De Roeck, Hybride Methodologies for the computational aeroacoustic analysis of confined, subsonic flows, Ph.D. thesis, KTU Leuven (2007)Google Scholar
  20. 20.
    A. Hüppe, Spectral Finite Elements for Acoustic Field Computation, Ph.D. thesis, Alpen-Adria-Universität Klagenfurt, Austria, (2013)Google Scholar
  21. 21.
    P. Croaker, A particle acccelerated hybrid CFD-BEM method for low Mach number flow induced noise, Ph.D. thesis, University of New South Wales, Australia, (2014)Google Scholar
  22. 22.
    A. Schell, Entwicklung einer Berechnungsmethode zur Vorhersage der Schallausbreitung im Nahfeld eines umströmten Kraftfahrzeugs, Ph.D. thesis, University of Stuttgart, (2014)Google Scholar
  23. 23.
    M. Breuer, in Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern (Shaker-Verlag, 2002)Google Scholar
  24. 24.
    E. Manoha, C. Herrero, P. Sagaut, S. Redonnet, in Numerical Prediction of Airfoil Aerodynamic Noise. Proceedings of 8th AIAA/CEAS Aeroacoustics Conference, Breckenridge, June 2002Google Scholar
  25. 25.
    M.J. Lighthill, On sound generated aerodynamically I. General theory. Proc. Roy. Soc. Lond. 211, 564–587 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    M.J. Lighthill, On sound generated aerodynamically II. Turbulence as a source of sound. Proc. Roy. Soc. Lond. 222, 1–22 (1954)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    M.S. Howe, Theory of Vortex Sound, Cambridge Texts in Applied Mathematics (Cambridge University Press, New York, 2003)zbMATHGoogle Scholar
  28. 28.
    N. Curle, The influence of solid boundaries upon aerodynamic sound. Proc. Roy. Soc. Lond. 231, 505–514 (1955)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    A. Powell, Aerodynamic noise and the plate boundary. Acoust. Soc. Am. 32, 982–990 (1960)CrossRefGoogle Scholar
  30. 30.
    X. Gloerfelt, F. Perot, C. Bailly, D. Juve, Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers. Sound Vib. 287, 129–151 (2005)CrossRefGoogle Scholar
  31. 31.
    J.C. Hardin, D.S. Pope, An acoustic/viscous splitting technique for computational aeroacoustics. Theoret. Comput. Fluid Dyn. 6, 323–340 (1994)CrossRefzbMATHGoogle Scholar
  32. 32.
    W.Z. Shen, J.N. Sørensen, Aeroacoustic modelling of low-speed flows. Theoret. Comput. Fluid Dyn. 13, 271–289 (1999)CrossRefzbMATHGoogle Scholar
  33. 33.
    J.H. Seo, Y.J. Moon, Perturbed compressible equations for aeroacoustic noise prediction at low mach numbers. AIAA J. 43, 1716–1724 (2005)CrossRefGoogle Scholar
  34. 34.
    Y. Morinishi, Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows. J. Comput. Phys. 229, 276–300 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    N. Castel, G. Cohen, M. Duruflé, Application of Discontinuous Galerkin spectral method on hexahedral elements for aeroacoustic. J. Comput. Acoust. 17(2), 175–196 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    F. Brezzi, L.D. Marini, E. Suli, Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Meth. Appl. Sci. 14, 1893–1903 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    A. Düster, Lecture Notes: High order FEM, p. 132 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations