Coupled Flow-Structural Mechanical Systems

  • Manfred KaltenbacherEmail author


The field interactions are realized through boundary conditions as well as source terms and can be generally separated into volume and surface coupled phenomena.


Time Step Size Fluid Domain Grid Adaption Interface Displacement Fluid Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W.A. Wall, Computational fluid-solid-mechanics in bio-medicalengineering—where to go from here? ECCOMAS 2012 CD-ROM Proceedings, (2012)Google Scholar
  2. 2.
    P. Causin, J.F. Gerbeau, F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194, 4506–4527 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Ch. Förster, W.A. Wall, E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 196(7), 1278–1293 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    S. Zörner, Numerical simulation method for a precise calculation of the human phonation under realistic conditions. Ph.D. thesis, Vienna University of Technology, (2014)Google Scholar
  5. 5.
    D.P. Mok, Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion (Partitioned analysis schemes in structural dynamics and fluid-structure-interaction). Ph.D. thesis, University of Stuttgart, (2001)Google Scholar
  6. 6.
    B.M. Irons, R.C. Tuck, A version of the Aitken accelerator for computer iteration. Int. J. Numer. Methods Eng. 1, 275–277 (1969)CrossRefzbMATHGoogle Scholar
  7. 7.
    J. Vierendeels, K. Dumontb, P.R. Verdonckb, A partitioned strongly coupled fluid-structure interaction method to model heart valve dynamics. J. Comput. Appl. Math. 218, 602–609 (2008)CrossRefGoogle Scholar
  8. 8.
    W.A. Wall, Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. Ph.D. thesis, University of Stuttgart, (1999)Google Scholar
  9. 9.
    F. Schäfer, S. Kniesburges, T. Uffinger, S. Becker, J. Grabinger, G. Link, M. Kaltenbacher, Numerical simulation of fluid-structure- and fluid-structure-acoustic interaction based on a partitioned coupling scheme. High Performance Computing in Science and Engineering Munich 2007, Transactions of the Third Joint HLRB and KONWIHR Result and Reviewing Workshop, Leibniz-Rechenzentrum München (LRZ), Garching (Springer, Heidelberg, 2007)Google Scholar
  10. 10.
    S. Yigit, M. Schäfer, M. Heck, Grid movement techniques and their influence on laminar fluid structure interaction computations. J. Fluids Struct. 24(6), 14 (2008)Google Scholar
  11. 11.
    T.E. Tezduyar, Finite element methods for fluid dynamic with moving boundaries and interfaces, Chapter 17, in Encyclopedia of Computational Mechanics, ed. by E. Stein, R. de Borst, T.J.R. Hughes (Wiley, New York, 2004)Google Scholar
  12. 12.
    G. Link, A Finite Element Scheme for Fluid-Solid-Acoustics Interactions and its Application to Human Phonation. Ph.D. thesis, University Erlangen-Nuremberg, (2008)Google Scholar
  13. 13.
    B. Hübner, Simultane Analyse von Bauwerk-Wind-Wechselwirkung (Simultaneous Analysis of Construction-Wind Interaction). Ph.D. thesis, Universität Braunschweig, (2003)Google Scholar
  14. 14.
    J.P. Gomes, H. Lienhart, Experimental study on a fluid-structure interaction reference test case, Fluid-Structure Interaction—Modelling Simulation, Optimization (Springer, Heidelberg, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations