Advertisement

Electromagnetic Field

  • Manfred KaltenbacherEmail author
Chapter

Abstract

In general, we distinguish two domains in electromagnetism, both are of course included in Maxwell’s equations

References

  1. 1.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. I (Dover, New York, 1954)zbMATHGoogle Scholar
  2. 2.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. II (Dover, New York, 1954)zbMATHGoogle Scholar
  3. 3.
    N. Ida, Engineering Electromagnetics (Springer, New York, 2004)CrossRefGoogle Scholar
  4. 4.
    Electromagnetic Theory (McGraw-Hill Inc, New York, 1941)Google Scholar
  5. 5.
    H. Hofmann, Das elektromagnetische Feld (Springer, New York, 1986)CrossRefGoogle Scholar
  6. 6.
    K.J. Binns, P.J. Lawrenson, C.W. Trowbridge (eds.), The Analytic and Numerical Solution of Electric and Magnetic Fields (Wiley, New York, 1992)Google Scholar
  7. 7.
    G. Lehner, Elektromagnetische Feldtheorie (Springer, New York, 1996)CrossRefGoogle Scholar
  8. 8.
    W.R. Smythe, Static and Dynamic Electricity (Taylor & Francis, Philadelphia, 1989)Google Scholar
  9. 9.
    J. Nédélec, A new family of mixed finite elements in \({R}^3\). Numer. Math. 50(1), 57–81 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    D. Arnold, R. Falk, R. Winther, Multigrid in H(div) and H(curl). Numer. Math. 85, 197–218 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    R. Hiptmair, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999)CrossRefMathSciNetGoogle Scholar
  12. 12.
    M. Schinnerl, J. Schöberl, M. Kaltenbacher, Nested multigrid methods for the fast numerical computation of 3D magnetic fields. IEEE Trans. Magn. 36(4), 1557–1560 (2000)CrossRefGoogle Scholar
  13. 13.
    S. Reitzinger, J. Schöberl, Algebraic Multigrid for Edge Elements. Numer. Linear Algebra Appl. 9, 223–238 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    V. Girault, P.-A. Raviart, Finite Element Approximation of the Navier-Stokes Equations (Springer, Berlin, 1979)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ch. Großmann, H.G. Roos, Numerik Partieller Differentialgleichungen (B.G. Teubner, Stuttgart, 1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    P.J. Leonard, D. Rodger, Comparision of methods for modelling jumps in conductivity using magnetic vector potential based formulations. IEEE Trans. Magn. 33(2), 1295–1298 (1997)CrossRefGoogle Scholar
  17. 17.
    M. Costabel, M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. Techincal Report IRMAR 01–26, IRMAR, Institut Mathematique Universite de Rennes 1, (2001)Google Scholar
  18. 18.
    M. Kaltenbacher, S. Reitzinger, Appropriate finite element formulations for 3D electromagnetic field problems. IEEE Trans. Magn. 38(2), 513–516 (2002)CrossRefGoogle Scholar
  19. 19.
    K. Preis, O. Biró, I. Ticar, Gauged current vector potential and reentrant corners in the FEM analysis of 3D eddy currents. IEEE Trans. Magn. 36(4), 840–843 (2000)CrossRefGoogle Scholar
  20. 20.
    C. de Boor, A Practical Guide to Splines (Springer, New York, 1987)Google Scholar
  21. 21.
    S. Reitzinger, B. Kaltenbacher, M. Kaltenbacher, A note on the approximation of B-H curves for nonlinear computations. Technical Report, SFB F013: Numerical and Symbolic Scientific Computing (Linz, Austria, 2002). SeptemberGoogle Scholar
  22. 22.
    C. Pechstein, B. Jüttler, Monotonicity-preserving interapproximation of B-H curves. Sfb report, Johannes Kepler University Linz, SFB Numerical and Symbolic Scientific Computing, (2004)Google Scholar
  23. 23.
    J. Schöberl, S. Zaglmayr, High order Nédélec elements with local complete sequence properties. COMPEL - Int. J. Comput. Math. Electr. Electron. Eng. 24(2), 374–384 (2005)CrossRefzbMATHGoogle Scholar
  24. 24.
    S. Zaglmayr, High Order Finite Element Methods for Electromagnetic Field Computation, Ph.D. thesis, Johannes Kepler University, Linz. (2006)Google Scholar
  25. 25.
    A. Bossavit, Computational Electromagnetism: Variational formulation, complementary, edge elements (Academic Press Inc, London, 1989)Google Scholar
  26. 26.
    R.D. Graglia, A.F. Peterson, F.P. Andriulli, Curl-conforming hierarchical vector bases for triangles and tetrahedra. IEEE Trans. Antennas Propag. 59(3), 950–959 (2011)CrossRefMathSciNetGoogle Scholar
  27. 27.
    O. Schenk, K. Gärtner, On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal. 23, 158–179 (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations