Acoustic Field

  • Manfred KaltenbacherEmail author


Acoustic waves can propagate in non-viscous media just in the form of longitudinal waves.


  1. 1.
    A.D. Pierce, Acoustics—An Introduction to its Physical Principles and Applications (Acoustical Society of America, Woodbury, 1991)Google Scholar
  2. 2.
    E. Zwicker, H. Fastl, Psychoacoustics (Springer, Berlin, 1999)CrossRefGoogle Scholar
  3. 3.
    V.P. Kuznetsov, Equations of nonlinear acoustics. Sov. Phys. Acoust. 16(4), 467–470 (1971)Google Scholar
  4. 4.
    M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Academic Press, San Diego, 1998)Google Scholar
  5. 5.
    S.I. Aanonsen, T. Barkvek, J.N. Tjotta, S. Tjotta, Distortion and harmonic generation in the near field of a finite amplitude sound beam. J. Acoust. Soc. Am. 75, 749–768 (1984)CrossRefzbMATHGoogle Scholar
  6. 6.
    F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, New York, 1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    P.A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, pp. 292–315 (1977)Google Scholar
  8. 8.
    G.C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer, Berlin, 2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    G. Cohen, S. Fauqueux, Mixed finite elements with mass-lumping for the transient wave equation. J. Comput. Acoust. 8, 171–188 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    D.N. Arnold, D. Boffi, R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42, 2429–2451 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    A. Hüppe, Spectral Finite Elements for Acoustic Field Computation. Ph.D. thesis, Alpen-Adria-Universität, Klagenfurt, (2013)Google Scholar
  12. 12.
    B. Flemisch, M. Kaltenbacher, S. Triebenbacher, B. Wohlmuth, Non-matching grids for a flexible discretization in computational acoustics. Commun. Comput. Phys. 11(2), 472–488 (2012)MathSciNetGoogle Scholar
  13. 13.
    F. Ihlenburg, I. Babuska, Finite element solution of the Helmholtz equation with high wave number part I: the h version of the finite element method. Comput. Math. Appl. 30, 9–37 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42(2), 553–575 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    L. Olson, K. Bathe, An infinite element for analysis of transient fluid-structure interactions. Eng. Comput. 2, 319–329 (1985)CrossRefGoogle Scholar
  16. 16.
    D. Dreyer, O. von Estorff, Improved conditioning of infinite elements for exterior acoustics. Int. J. Numer. Methods Eng. 58, 933–953 (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    R. Clayton, B. Engquist, Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am. 67, 1529–1540 (1977)Google Scholar
  18. 18.
    B. Engquist, A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31, 629–651 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    M. Hofer, Finite-Elemente-Berechnung von periodischen Oberflächenwellen-Strukturen. Ph.D. thesis, University of Erlangen-Nuremberg, (2003)Google Scholar
  20. 20.
    J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    F. Collino, P. Monk, The perfectly matched layer in curvilinear coordinates. SIAM J. Sci. Comput. 19, 2061–2090 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    I. Harari, M. Slavutin, E. Turkel, Analytical and numerical studies of a finite element PML for the Helmholtz equation. J. Comput. Acoust. 8, 121–127 (2000)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Fang Q. Hu, Absorbing boundary conditions. Int. J. Comput. Fluid Dyn. 18, 513–522 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    I. Singer, E. Turkel, A perfectly matched layer for Helmholtz equation in a semi-infinite strip. J. Comput. Phys. 201, 439–465 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    F.L. Teixeira, W.C. Chew, Complex space approach to perfectly layers: a review and some developments. Int. J. Numer. Model. 13, 441–455 (2000)CrossRefzbMATHGoogle Scholar
  26. 26.
    A. Bermúdez, L. Hervella-Nieto, A. Prieto, R. Rodríguez, An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems. J. Comput. Phys. 223(2), 469–488 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    E. Becache, S. Fauqueux, P. Joly, Stability of matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188, 399–433 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    J.H. Bramble, J.E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems. Math. Comput. (2006)Google Scholar
  29. 29.
    T. Rylander, J.M. Jin, Perfectly matched layer for the time domain finite element method. J. Comput. Phys. 238–250 (2004)Google Scholar
  30. 30.
    Björn Sjögreen and, N. Anders Petersson, Perfectly matched layers for Maxwell’s equations in second order formulation. J. Comput. Phys. 209(1), 19–46 (2005)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Daniel Appelö, Gunilla Kreiss, Application of a perfectly matched layer to the nonlinear wave equation. Wave Motion 44(7–8), 531–548 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    B. Kaltenbacher, M. Kaltenbacher, I. Sim, A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. J. Comput. Phys. 235, 407–422 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    A. Hüppe, M. Kaltenbacher, Stable matched layer for the acoustic conservation equations in the time domain. J. Comput. Acoust. 20(1), 17 (2012)CrossRefGoogle Scholar
  34. 34.
    A. Hüppe, M. Kaltenbacher, Finite element solution of the Helmholtz equation with high wave number part II: the h-p version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)CrossRefMathSciNetGoogle Scholar
  35. 35.
    D.T. Blackstock, Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude. J. Acoust. Soc. Am. 39(6), 1019–1026 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    J. Hoffelner, Simulation, Erzeugung und Anwendung von hochintensivem Ultraschall. Ph.D. thesis, University of Erlangen-Nuremberg, (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations