Advertisement

Flow Field

  • Manfred KaltenbacherEmail author
Chapter

Abstract

We consider the motion of fluids in the continuum approximation

Keywords

Froude Number Open Boundary Condition Lagrangian System Eulerian System Transport Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T.J.R. Hughes, W.K. Liu, T.K. Zimmermann, Lagrangian-eulerian finite element formulation for incompressible viscous flows. Compu. Methods Appl. Mechani. Eng. 29(3), 329–349 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    F. Durst, Grundlagen der Strömungsmechanik (Springer, New York, 2006)zbMATHGoogle Scholar
  3. 3.
    M.S. Howe, Acoustics of Fluid-Structur Interactions (Cambridge Monographs on Mechanics, Cambridge, 1998)CrossRefGoogle Scholar
  4. 4.
    H. Schlichting, K. Gersten, Grenzschicht-Theorie (Boundary Layer Theory) (Springer, Berlin, 2006)Google Scholar
  5. 5.
    P.M. Gresho, R.L. Sani, Incompressible Flow and the Finite-Element Method (Wiley, Chichester, 2000)zbMATHGoogle Scholar
  6. 6.
    F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, New York, 1991)CrossRefzbMATHGoogle Scholar
  7. 7.
    J.H. Ferzinger, M. Peric, Computational Methods for Fluid Dynamics (Springer, New York, 2002)CrossRefGoogle Scholar
  8. 8.
    W.A. Wall, Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen, Ph.D. thesis, University of Stuttgart (1999)Google Scholar
  9. 9.
    A.N. Brooks, T.J.R. Hughes, Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    V. Gravemeier, The variational multiscale method for laminar and turbulent incompressible flow, Ph.D. thesis, Universität Stuttgart (2003)Google Scholar
  11. 11.
    F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet, G. Rogé, A relationship between stabilized finite element methods and the galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96, 117–129 (1992)CrossRefzbMATHGoogle Scholar
  12. 12.
    J. Donea, A. Huerta, Finite Element Methods for Flow Problems (Wiley, Chichester, 2003)CrossRefGoogle Scholar
  13. 13.
    T.E. Tezduar, S. Mittal, S.E. Ray, R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 95, 221–242 (1992)CrossRefGoogle Scholar
  14. 14.
    L.P. Franca, S.L. Frey, Stabilized finite element methods: II the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    L.P. Franca, C. Farhat, Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123, 299–308 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    T.J.R. Hughes, Multiscale phenomena: green’s functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)CrossRefzbMATHGoogle Scholar
  17. 17.
    T.J.R. Hughes, G. Scovazzi, L.P. Franca, Encyclopedia of Computational Mechanics: Ch 2 Multiscale and Stabilized Methods (Wiley, New York, 2004)Google Scholar
  18. 18.
    E. Hairer, S.P. Norsett, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd Revised edn. (Springer, Berlin, 1991)CrossRefGoogle Scholar
  19. 19.
    R. Codina, A nodal-based implementation of a stabilized finite element method for incompressible flow problems. Int. J. Numer. Meth. Fluids 33, 737–766 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    G. Link, A finite element scheme for fluid-solid-acoustics interactions and its application to human phonation, Ph.D. thesis, University Erlangen-Nuremberg (2008)Google Scholar
  21. 21.
    S. Zörner, Numerical simulation method for a precise calculation of the human phonation under realistic conditions, Ph.D. thesis, Vienna University of Technology (2014)Google Scholar
  22. 22.
    M. Breuer, Direkte Numerische Simulation und Large-Eddy Simulation Turbulenter Strömungen auf Hochleistungsrechnern (Shaker, Aachen, 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations