The Finite Element (FE) Method

  • Manfred KaltenbacherEmail author


The finite element (FE) method has become the standard numerical calculation scheme for the computer simulation of physical systems [1, 2, 3].


Shape Function Algebraic System Interpolation Function Quadrilateral Element Quadrature Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K.J. Bathe, Finite Element Procedures (Prentice Hall, New Jersey, 1996)Google Scholar
  2. 2.
    N. Ida, Engineering Electromagnetics (Springer, 2004)Google Scholar
  3. 3.
    O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, vol. 1 (Butterworth-Heinemann, UK, 2003)Google Scholar
  4. 4.
    T.J.R. Hughes, The Finite Element Method, 1st edn. (Prentice-Hall, New Jersey, 1987)zbMATHGoogle Scholar
  5. 5.
    F.X. Zgainski, J.L. Coulomb, Y. Marechal, A new family of finite elements: the pyramidal element. IEEE Trans. Magn. 32, 1393–1396 (1996)CrossRefGoogle Scholar
  6. 6.
    M. Jung, U. Langer, Methode der Finiten Elemente für Ingenieure, 2nd edn. (Springer, 2013)Google Scholar
  7. 7.
    K. Meyberg, P. Vachenauer, Höhere Mathematik 1 (Springer, 1993)Google Scholar
  8. 8.
    H. Whitney, Geometric Integration Theory (Princeton University Press, Princeton, 1957)Google Scholar
  9. 9.
    J.C. Nédélec, Mixed finite elements in \(R^3\). Numer. Math. 35, 315–341 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    M.L. Barton, Z.J. Cendes, New vector finite elements for three-dimensional magnetic field computation. J. Appl. Phys. 61(8), 3919–3921 (1987)CrossRefGoogle Scholar
  11. 11.
    A. Bossavit, J.C. Verite, A mixed FEM-BIEM method to solve 3-D eddy current problems. IEEE Trans. Magn. 18, 431–435 (1982)CrossRefGoogle Scholar
  12. 12.
    A. Kameari, Three dimensional eddy current calculation using edge elements for magnetic vector potential. Appl. Electromagn. Mater. 225–236 (1986)Google Scholar
  13. 13.
    G. Mur, A.T. Hoop, A finite-element method for computing three-dimensional electromagnetic fields in inhomogeneous media. IEEE Trans. Magn. 21, 2188–2191 (1985)CrossRefGoogle Scholar
  14. 14.
    J.S. Welij, Calculation of eddy current in terms of H on hexahedra. IEEE Trans. Magn. 21, 2239–2241 (1985)CrossRefGoogle Scholar
  15. 15.
    P. Silvester, R. Ferrari, Finite Elements for Electrical Engineers (Cambridge, 1996)Google Scholar
  16. 16.
    M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, (Wiley, 2000)Google Scholar
  17. 17.
    Ch. Großmann, H.G. Roos, Numerik Partieller Differentialgleichungen (Teubner, 1994)Google Scholar
  18. 18.
    G. Strang, G. Fix, An Analysis of the Finite Element Method (Cambridge Press, Wellesley, 2008)Google Scholar
  19. 19.
    I. Babuska, B. Szabo, I. Katz, The p-version of the finite element method. SIAM J. Numer. Anal. 18(3), 515–545 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    B. Szabó, I. Babuška, Finite Element Analysis, 1st edn. (Wiley, 1991)Google Scholar
  21. 21.
    O.C. Zienkiewicz, J.P. De, S.R. Gago, D.W. Kelly, The hierarchical concept in finite element analysis. Comput. Struct. 16, 53–65 (1983)CrossRefzbMATHGoogle Scholar
  22. 22.
    G. Szegö, Orthogonal polynomials. American Mathematical Society Colloquium Publications, no. Bd. 23. American Mathematical Society (1959)Google Scholar
  23. 23.
    S. Zaglmayr, High order finite element methods for electromagnetic field computation. Ph.D. thesis, Johannes Kepler University, Linz (2006)Google Scholar
  24. 24.
    A. Düster, Lecture notes: high order FEM. 132 (2005)Google Scholar
  25. 25.
    G. Karniadakis, S.J. Sherwin, Spectral/HP Element Methods for CFD (Oxford University Press, 1999)Google Scholar
  26. 26.
    D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations (Springer, Dordrecht, 2009)Google Scholar
  27. 27.
    A.T. Patera, A spectral element method for fluid dynamics—laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)CrossRefzbMATHGoogle Scholar
  28. 28.
    G.C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer, New York, 2002)Google Scholar
  29. 29.
    William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes 3rd edition: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, 2007)Google Scholar
  30. 30.
    R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    C. Bernardi, Y. Maday, F. Rapetti, Basics and some applications of the mortar element method. GAMM-Mitt. 28(2), 97–123 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    B. Flemisch, Non-matching triangulations of curvilinear interfaces applied to electro-mechanics and elasto-acoustics, Ph.D. thesis, University of Stuttgart, (2006)Google Scholar
  33. 33.
    J. Danek, H. Kutakova, The mortar finite element method in 2D: implementation in MATLAB, in 16th Annual Conference Proceedings of Technical Computing (Prague, Czech Republic, 2008)Google Scholar
  34. 34.
    B.I. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38(3), 989–1012 (2000). MRMR1781212 (2001h:65132)Google Scholar
  35. 35.
    S. Triebenbacher, Nonmatching grids for the numerical simulation of problems from aeroacoustics and vibroacoustics. Ph.D. thesis, Alpen-Adria-Universität Klagenfurt, Austria (2012)Google Scholar
  36. 36.
    S. Triebenbacher, M. Kaltenbacher, B. Flemisch, B. Wohlmuth, Applications of the mortar finite element method in vibroacoustics and flow induced noise computations. Acta Acust. United Acust. 96, 536–553 (2010)CrossRefGoogle Scholar
  37. 37.
    Ivan E. Sutherland, Gary W. Hodgman, Reentrant polygon clipping. Commun. ACM 17, 32–42 (1974)CrossRefzbMATHGoogle Scholar
  38. 38.
    J. Grabinger, Mechanical-acoustic coupling on non-matching finite element grids. Master’s thesis, University Erlangen-Nuremberg, June 2007Google Scholar
  39. 39.
    J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Tech. Report 36, Abh. Math. Univ. Hamburg, (1971)Google Scholar
  40. 40.
    A. Hansbo, P. Hansbo, M.G. Larson, A finite element method on composite grids based on nitsche’s method. ESAIM Math. Model. Numer. Anal. 37(3), 495–514 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    A. Fritz, S. Hüeber, B. Wohlmuth, A comparison of mortar and Nitsche techniques for linear elasticity. CALCOLO (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations