Advertisement

Industrial Applications

  • Manfred KaltenbacherEmail author
Chapter

Abstract

The electrodynamic loudspeaker to be investigated is shown in Fig. 14.1. A cylindrical, small, light, voice coil is suspended freely in a strong radial magnetic field, generated by a permanent magnet.

Keywords

Source Domain Perturbation Equation Coil Current Acoustic Simulation Magnetic Nonlinearity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H.A.C. Tilmans, Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. J. Micromech. Microeng. 6, 157–176 (1996)CrossRefGoogle Scholar
  2. 2.
    M. Rausch, Numerische Analyse und Computeroptimierung von elektrodynamischen Aktoren - am Beispiel eines elektrodynamischen Lautsprechers. Ph.D. thesis, University of Erlangen-Nuremberg (2001)Google Scholar
  3. 3.
    G. Krump, Concerning the Perception of Low-frequency Distortions (Fortschritte der Akustik DAGA, Oldenburg, 2000)Google Scholar
  4. 4.
    W. Dietrich, Transformatoren: Stand der Technik und Tendenzen (VDE-Verlag, Berlin, 1986)Google Scholar
  5. 5.
    M.J. Heathcote, The J & P Transformer Book (Newnes, 1998)Google Scholar
  6. 6.
    H. Hüttner, Noise and vibration of transformers, their origin and reduction. ELIN 41–46 (1983)Google Scholar
  7. 7.
    M. Kanoi, Y. Hori, M. Maejima, T. Obata, Transformer noise reduction with new sound insulation panel. IEEE Trans. Power Appar. Syst. 2817–2825 (1983)Google Scholar
  8. 8.
    E. Reiplinger, H. Stelter, Geräuschprobleme, etz-a 3, 224–228 (1977)Google Scholar
  9. 9.
    European Standard, EN 60551/A1 1997 on determination of transformer and reactor sound levels (BSI: ISBN: 0 580 20087 6)Google Scholar
  10. 10.
    E. Reiplinger, Lastabhängige Transformatorgeräusche, etz 3, 106–109 (1989)Google Scholar
  11. 11.
    F. Armero, E. Petocz, Formulation and analysis of conserving algorithms for dynamic contact/impact problems. Comput. Methods Appl. Mech. Eng. 158, 269–300 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    K. Willner, Ein statistisches Modell für den Kontakt metallischer Körper, Master’s thesis, Universität der Bundeswehr Hamburg (1995)Google Scholar
  13. 13.
    M. Ertl, M. Kaltenbacher, Investigation of the dynamics of electromagnetic valves by a coupled magneto-mechanical algorithm including contact mechanics. COMPEL 30(2), 603–621 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    K. Uchino, Recent developments in ceramic actuators. Proc. SPIE Smart Struct. Mater. 3321, 46–57 (1998)Google Scholar
  15. 15.
    B. Girod, G. Greiner, H. Niemann, Principles of 3D Image Analysis and Synthesis (Kluwer Academic Publishers, Boston, 2000)zbMATHGoogle Scholar
  16. 16.
    O. Ahrens, D. Hohlfeld, A. Buhrdof, O. Glitza, J. Bimder, A new class of capacitive micromachined ultrasonic transducers, in Proceedings of the IEEE Ultrasonics Symposium, vol. 2 (IEEE, 2000)Google Scholar
  17. 17.
    C. Eccardt, K. Niederer, T. Scheiter, C. Hierold, Surface micromachined ultrasound transducers in CMOS technology, in Proceedings of the IEEE Ultrasonics Symposium (IEEE, 1996), pp. 959–962Google Scholar
  18. 18.
    B.T. Khuri-Yakub, C.H. Cheng, F.L. Degertekin, S. Ergun, Silicon micromachined ultrasonic transducers. Jpn. J. Appl. Phys. 39, 2883–2887 (2000)CrossRefGoogle Scholar
  19. 19.
    B.T. Khuri-Yakub, F.L. Degertekin, X.-C. Jin, S. Calmes, I. Ladabaum, S. Hansen, X.J. Zang, Silicon micromachined ultrasonic transducers, in Proceedings of the IEEE Ultrasonics Symposium (IEEE, 1998)Google Scholar
  20. 20.
    R. Lerch, M. Kaltenbacher, A. Hauck, G. Link, M. Hofer, Accurate modeling of CMUTs, in Proceedings of the IEEE Ultrasonics Symposium (IEEE, 2004), pp. 264–269Google Scholar
  21. 21.
    G. Caliano, R. Carotenuto, A. Caronti, M. Pappalardo, V. Foglietti, E. Cianci, L. Visigalli, I. Persi, CMUT echographic probes: design and fabrication process, in Proceedings of the IEEE Ultrasonics Symposium (IEEE, 2002), pp. 1040–1043Google Scholar
  22. 22.
    M. Kaltenbacher, H. Landes, J. Hoffelner, R. Simkovics, Use of modern simulation for industrial applications of high power ultrasonics, in Proceedings of the IEEE Ultrasonics Symposium, CD-ROM Proceedings (IEEE, 2002), pp. 673–678Google Scholar
  23. 23.
    S.I. Aanonsen, T. Barkvek, J.N. Tjotta, S. Tjotta, Distortion and harmonic generation in the near field of a finite amplitude sound beam. J. Acoust. Soc. Am. 75, 749–768 (1984)CrossRefzbMATHGoogle Scholar
  24. 24.
    Y.S. Lee, M.F. Hamilton, Time-domain modeling of pulsed finite amplitude sound beams. J. Acoust. Soc. Am. 97, 906–917 (1995)CrossRefGoogle Scholar
  25. 25.
    G. Wojcik, T. Szabo, J. Mould, L. Carcione, F. Clougherty, Nonlinear pulse calculations and data in water and tissue mimic, in Proceedings of IEEE Ultrasonics Symposium, pp. 1521–1526 (1999)Google Scholar
  26. 26.
    P.T. Christopher, K.J. Parker, New approaches to nonlinear diffractive field propagation. J. Acoust. Soc. Am. 90, 488–499 (1991)CrossRefGoogle Scholar
  27. 27.
    T. Dreyer, W. Kraus, E. Bauer, R.E. Riedlinger, Investigations of compact focusing transducers using stacked piezoelectric elements for strong sound pulses in therapy, in Proceedings of the IEEE Ultrasonics Symposium (IEEE, 2000), pp. 1239–1242Google Scholar
  28. 28.
    M. Döllinger, The next step in voice assessment: high-speed digital endoscopy and objective evaluation. Curr. Bioinform. 4(2), 101–111 (2009)CrossRefGoogle Scholar
  29. 29.
    J.L. Fitch, A. Holbrook, Modal vocal fundamental frequency of young adults. Arch. Otolaryngol. 92(4), 379–382 (1970)CrossRefGoogle Scholar
  30. 30.
    H. Gray, P.L. Williams, L.H. Bannister, Gray’s anatomy: the anatomical basis of medicine and surgery (Gray’s Anatomy, Churchill Livingstone, New York, 1995)Google Scholar
  31. 31.
    G. Link, M. Kaltenbacher, M. Breuer, M. Döllinger, A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation. Comput. Methods Appl. Mech. Eng. 198, 3321–3334 (2009)CrossRefzbMATHGoogle Scholar
  32. 32.
    A. Gömmel, Modellbildung und Fluid-Struktur-Interaktion in der Biomechanik am Beispiel der menschlichen Phonation, Ph.D. thesis, RWTH Aachen (2010)Google Scholar
  33. 33.
    S. Zörner, M. Kaltenbacher, M. Döllinger, Investigation of prescribed movement in fluid-structure interaction simulation for the human phonation process. Comput. Fluids 86, 133–140 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    P. Sidlof, S. Zörner, A. Hüppe, A hybrid approach to the computational aeroacoustics of human voice production. Biomech. Model. Mechanobiol. (2014)Google Scholar
  35. 35.
    R.C. Scherer, D. Shinwari, K.J. De Witt, C. Zhang, B.R. Kucinschi, A.A. Afjeh, Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10\(^\circ \). J. Acoust. Soc. Am. 109(4), 1616–1630 (2001)CrossRefGoogle Scholar
  36. 36.
    B.H. Story, I. Titze, E.A. Hoffman, Vocal tract area functions from magnetic resonance imaging. J. Acoust. Soc. Am. 100(1), 537–554 (1996)CrossRefGoogle Scholar
  37. 37.
    F. Durst, M. Schäfer, A parallel block-structured multigrid method for the prediction of incompressible flows. Int. J. Numer. Methods Fluids 22, 549–565 (1996)CrossRefzbMATHGoogle Scholar
  38. 38.
  39. 39.
    F.R. Menter, Y. Egorov, Direct and Large-Eddy Simulation VI. SAS turbulence modelling of technical flows (Springer, Netherlands, 2006)Google Scholar
  40. 40.
    W. Rodi, J.H. Ferziger, M. Breuer, M. Pourquiee, Status of large eddy simulation: results of a workshop, J. Fluids Eng. 119 (248) (1997)Google Scholar
  41. 41.
    S. Becker, C. Hahn, M. Kaltenbacher, R. Lerch, Flow-induced sound of wall-mounted cylinders with different geometries. AIAA J. 46(9), 2265–2281 (2008)CrossRefGoogle Scholar
  42. 42.
    The Edge Tone on HyperPhysics, Department of Physics and Astronomy, Georgia State University (2010), http://hyperphysics.phy-astr.gsu.edu/hbase/music/edge.html
  43. 43.
    G. Burniston Brown, The vortex motion causing edge tones, Proc. Phys. Soc. 49(5), 493 (1937)Google Scholar
  44. 44.
    I. Vaik, G. Paal, Experiments on the edge tone, in Conference on Modelling Fluid Flow - 14th International Conference on Fluid Flow Technologies, Budapest, Hungary, 9–12 September 2009Google Scholar
  45. 45.
    I. Vaik, G. Paal, M. Kaltenbacher, S. Triebenbacher, S. Becker, I. Shevchenko, Aeroacoustics of the edge tone: 2D–3D coupling between CFD and CAA. Acta Acust. United Acust. 99, 245–259 (2013)CrossRefGoogle Scholar
  46. 46.
    M. De Gennaro, H. Kuehnelt, M. Kaltenbacher, A numerical investigation of the laminar instability multi-tonal noise of aerofoils, in Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference) (2012)Google Scholar
  47. 47.
    R. Ewert, W. Schröder, Acoustic perturbation equations based on flow decomposition via source filtering. J. Comput. Phys. 188, 365–398 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations