Algebraic Solvers

  • Manfred KaltenbacherEmail author


In recent years, many different formulations using Lagrange (nodal) as well as Nédélec (edge) finite elements for the numerical computation of Maxwell’s equations have been published, e.g., [1, 2].


  1. 1.
    O. Biró, K. Preis, On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents. IEEE Trans. Magn. 25(4), 3145–3159 (1989)CrossRefGoogle Scholar
  2. 2.
    Y. Kawase, O. Miyatani, T. Yamaguchi, Numerical analysis of dynamic characteristics of electromagnets using 3-d finite element method with edge elements. IEEE Trans. Magn. 30(5), 3248–3251 (1994)CrossRefGoogle Scholar
  3. 3.
    D. Arnold, R. Falk, R. Winther, Multigrid in H(div) and H(curl). NUMEM 85, 197–218 (2000)zbMATHMathSciNetGoogle Scholar
  4. 4.
    R. Hiptmair, Multigrid method for Maxwell’s equations. SIAJN 36(1), 204–225 (1999)MathSciNetGoogle Scholar
  5. 5.
    M. Schinnerl, J. Schöberl, M. Kaltenbacher, Nested multigrid methods for the fast numerical computation of 3D magnetic fields. IEEE Trans. Magn. 36(4), 1557–1560 (2000)CrossRefGoogle Scholar
  6. 6.
    W.L. Briggs, A Multigrid Tutorial, SIAM, 1987Google Scholar
  7. 7.
    U. Rüde, Mathematical and computational techniques for multilevel adaptive methods, (SIAM, 1993)Google Scholar
  8. 8.
    J.W. Ruge, K. Stüben, In Algebraic Multigrid (AMG), Multigrid Methods, Frontiers in Applied Mathematics, ed. by S. McCormick (SIAM, Philadelphia, 1986), pp. 73–130Google Scholar
  9. 9.
    Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Publication, Company, 1996)zbMATHGoogle Scholar
  10. 10.
    D. Braess, Finite Elemente (Springer, Berlin, 2003). (3. korregierte Auflage)CrossRefzbMATHGoogle Scholar
  11. 11.
    W. Hackbusch, Multigrid Methods and Application (Springer, Berlin, New York, 1985)CrossRefGoogle Scholar
  12. 12.
    M. Jung, U. Langer, A. Meyer, W. Queck, M. Schneider, Multigrid Preconditioners and their Application. In: Proceedings of the 3rd GDR Multigrid Seminar held at Biesenthal, Karl-Weierstraß-Institut für Mathematik, pp. 11–52, May (1989)Google Scholar
  13. 13.
    J. Schöberl, An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Vis. Sci. no. 1, 41–52, (1997)Google Scholar
  14. 14.
    T. Nakata, N. Takahashi, H. Morishige, J.L. Coulomb, C. Sabonnadiere, Analysis of 3D Static Force Problem. In: Proceedings of the TEAM Workshop on Computation of Applied Electromagnetics in Materials, pp. 73–79, (1993)Google Scholar
  15. 15.
    B. Heise, Mehrgitter-Newton-Verfahren zur Berechnung nichtlinearer magnetischer Felder, Ph.D. thesis, TU Chemnitz, 1994Google Scholar
  16. 16.
    K. Fujiwara, T. Nakata, H. Ohashi, Improvement for convergence characteristic of ICCG method for the A-\(\Phi \) method using edge elements. IEEE Trans. Magn. 32(3), 804–807 (1996)CrossRefGoogle Scholar
  17. 17.
    D. Braess, Towards algebraic multigrid for elliptic problems of second order. COMPU 55, 379–393 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    F. Kickinger, U. Langer, A note on the global extraction element-by-element method. ZAMM, no. 78, 965–966 (1998)Google Scholar
  19. 19.
    S. Reitzinger, Algebraic Multigrid Methods for Large Scale Finite Element Equations. Reihe C—Technik und Naturwissenschaften, no. 36, Universitätsverlag Rudolf Trauner, (2001)Google Scholar
  20. 20.
    P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. COMPU 56, 179–196 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    A. Brandt, Algebraic multigrid theory: The symmetric case. APPMC 19, 23–56 (1986)zbMATHGoogle Scholar
  22. 22.
    M. Kaltenbacher, H. Landes, S. Reitzinger, R. Peipp, 3D simulation of electrostatic-mechanical transducers using algebraic multigrid. IEEE Trans. Magn. 38(2), 985–988 (2002)CrossRefGoogle Scholar
  23. 23.
    M. Kaltenbacher, S. Reitzinger, Algebraic Multigrid for Solving Electromechanical Problems. Multigrid Methods VI, Springer, Lecture Notes in Computational Science and Engineering, (1999)Google Scholar
  24. 24.
    M. Kaltenbacher, S. Reitzinger, Nonlinear 3D magnetic field computations using Lagrange FE-functions and algebraic multigrid. IEEE Trans. Magn. 38(2), 1489–1496 (2002)CrossRefGoogle Scholar
  25. 25.
    M. Kaltenbacher, S. Reitzinger, J. Schöberl, Algebraic multigrid method for solving 3D nonlinear electrostatic and magnetostatic field problems. IEEE Trans. Magn. 36(4), 1561–1564 (2000)CrossRefGoogle Scholar
  26. 26.
    S. Reitzinger, M. Kaltenbacher, Algebraic multigrid methods for magnetostatic field problems. IEEE Trans. Magn. 38(2), 477–480 (2002)CrossRefGoogle Scholar
  27. 27.
    S. Reitzinger, J. Schöberl, Algebraic multigrid for edge elements. Numer. Linear Algebra Appl. 9, 223–238 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    S. Reitzinger, U. Schreiber, U. van Rienen, Algebraic Multigrid for Complex Symmetric Matrices. Numerical Study, Technical Report 02–01, Johannes Kepler University Linz, SFB: Numerical and Symbolic Scientific Computing, (2002)Google Scholar
  29. 29.
    M. Rausch, M. Gebhardt, M. Kaltenbacher, H. Landes, Magnetomechanical field computation of a clinical magnetic resonance imaging (MRI) scanner. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 22(3), 576–588 (2003)CrossRefGoogle Scholar
  30. 30.
    G. Haase, M. Kuhn, U. Langer, S. Reitzinger, J. Schöberl, Parallel Maxwell solvers, scientific computing in electrical engineering. U. Van Rienen, M. Günther, and D. Hecht, (eds.), Lecture Notes in Computational Science and Engineering, vol. 18, Springer, (2000)Google Scholar
  31. 31.
    G. Haase, M. Kuhn, S. Reitzinger, Parallel AMG on distributed memory computers. SIAM J. Sci. Comput. 24(2), 410–427 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    J. Schöberl, S. Zaglmayr, High order Nédélec elements with local complete sequence properties. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 24(2), 374–384 (2005)CrossRefzbMATHGoogle Scholar
  33. 33.
    O. Schenk, K. Gärtner, On fast factorization pivoting methods for symmetric indefinite systems. Elec. Trans. Numer. Anal. 23, 158–179 (2006)zbMATHGoogle Scholar
  34. 34.
    O. Schenk, K. Gärtner, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36(1), 204–225 (1999)MathSciNetGoogle Scholar
  35. 35.
    A. Kameari, Improvement of ICCG convergence for thin elements in magnetic field analyses using the finite-element method. IEEE Trans. Magn. 44(6), 178–1181 (2008)Google Scholar
  36. 36.
    Ch. Chen, O. Bíró, Geometric multigrid with plane smoothing for thin elements in 3-D magnetic fields calculation. IEEE Trans. Magn. 48(2), 443–446 (2012)CrossRefGoogle Scholar
  37. 37.
    A. Hauck, M. Ertl, J. Schöberl, M. Kaltenbacher, Accurate magnetostatic simulation of step-lap joints in transformer cores using anisotropic higher order FEM. COMPEL 32(5), 1581–1595 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations