Advertisement

Piezoelectric Systems

  • Manfred KaltenbacherEmail author
Chapter

Abstract

The piezoelectric transducing mechanism is based on the interaction between the electric quantities, electric field intensity \({\varvec{E}}\) and electric induction \({\varvec{D}}\), with the mechanical quantities, mechanical stress \([{\varvec{\sigma }}]\) and strain \([{\varvec{S}}]\).

References

  1. 1.
    J. Tichý, G. Gautschi, Piezoelektrische Meßtechnik (Springer, Berlin, 1980)CrossRefGoogle Scholar
  2. 2.
    R. Lerch, Sensorik und Prozessmesstechnik, Vorlesungsskript. Universität Erlangen-NürnbergGoogle Scholar
  3. 3.
    M. Kamlah, Ferroelectric and ferroelastic piezoceramics—modeling of electromechanical hysteresis phenomena. Contin. Mech. Thermodyn. 13, 219–268 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    M. Kaltenbacher, B. Kaltenbacher, R. Simkovics, R. Lerch, Determination of piezoelectric material parameters using a combined measurement and simulation technique. In: Proceedings of the IEEE Ultrasonics Symposium (2002)Google Scholar
  5. 5.
    M. Kamlah, U. Böhle, Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int. J. Solids Struct. 38, 605–633 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    C.M. Landis, Non-linear constitutive modeling of ferroelectrics. Curr. Opin. Solid State Mat. Sci. 8, 59–69 (2004)CrossRefGoogle Scholar
  7. 7.
    J. Schröder, H. Romanowski, A simple coordinate invariant thermodynamic consistent model for nonlinear electro-mechanical coupled ferroelectrica, ECCOMAS 2004 Proceedings of The European Community on Computational Methods in Applied Sciences, vol. 2 (Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finnland, 2004)Google Scholar
  8. 8.
    A. Fröhlich, Mikromechanisches Modell zur Ermittlung effektiver Materialeigenschaften von piezoelektrischen Polykristallen, Ph.D. thesis, University of Karlsruhe (TH), Forschungszentrum Karlsruhe (2001)Google Scholar
  9. 9.
    W. Seemann, A. Arockiarajan, B. Delibas, Modeling and Simulation of Piezoceramic Materials Using Micromechanical Approach (European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväskylä, 2004)Google Scholar
  10. 10.
    A. Arockiarajan, B. Delibas, A. Menzel, W. Seemann, Studies on nonlinear electromechanical behavior of piezoelectric materials using finite element modeling, International Workshop on Piezoelectric Materials and Applications in Actuators, IWPMA (Heinz Nixdorf Institute, University of Paderborn, Paderborn, 2005)Google Scholar
  11. 11.
    P.N. Sreeram, G. Salvady, N.G. Naganathan, Hysteresis prediction for a piezoceramic material system. ASME Winter Annu. Meet. 35, 1 (1993)Google Scholar
  12. 12.
    D.C. Hughes, J.T. Wen, Preisach modeling and compensation for smart material hysteresis. Proc.: Act. Mater. Smart Struct. 2427, 50–64 (1995)Google Scholar
  13. 13.
    K. Kuhnen, Inverse Steuerung piezoelektrischer Aktoren mit Hysterese-, Kriech- und Superpositionsoperatoren. Ph.D. thesis, University of Saarbrücken (2001)Google Scholar
  14. 14.
    T. Hegewald, B. Kaltenbacher, M. Kaltenbacher, R. Lerch, Efficient modeling of ferroelectric behavior for the analysis of piezoceramic actuators. J. Intell. Mater. Syst. Struct. 19(10), 1117–1129 (2008)Google Scholar
  15. 15.
    M. Kaltenbacher, B. Kaltenbacher, T. Hegewald, R. Lerch, Finite element formulation for ferroelectric hysteresis of piezoelectric materials. J. Intell. Mater. Syst. Struct. 21, 773–785 (2010)CrossRefGoogle Scholar
  16. 16.
    A.Y. Belov, W.S. Kreher, Simulation of microstructure evolution in polycrystalline ferroelectrics ferroelastics. Acta Mater. 54, 3463–3469 (2006)CrossRefGoogle Scholar
  17. 17.
    E. Bassiouny, A.F. Ghaleb, Thermodynamical formulation for coupled electromechanical hysteresis effects: combined electromechanical loading. Int. J. Eng. Sci. 27(8), 989–1000 (1989)CrossRefzbMATHGoogle Scholar
  18. 18.
    I.D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications (Elsevier, New York, 2003)Google Scholar
  19. 19.
    B. Kaltenbacher, T. Lahmer, M. Mohr, M. Kaltenbacher, PDE based determination of piezoelectric material tensors. Eur. J. Appl. Math. 17, 383–416 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    T. Lahmer, M. Kaltenbacher, B. Kaltenbacher, R. Lerch, FEM-based determination of real and complex elastic dielectric and piezoelectric moduli in piezoceramic materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(2), 465–475 (2008)CrossRefGoogle Scholar
  21. 21.
    B. Kaltenbacher, M. Kaltenbacher, Modelling and iterative identification of hysteresis via Preisach operators in PDEs. Radon Series Comp. Appl. Math. (2007)Google Scholar
  22. 22.
    J.E. Huber, N.A. Fleck, Multi-axial electrical switching of a ferroelectric: theory versus experiment. J. Mech. Phys. Solids 49, 785–811 (2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    M. Nicolai, Polarisierungsverhalten von Piezokeramik unter kombinierter elektrischer, mechanischer und thermischer Beanspruchung. Ph.D. thesis, University Dresden (2012)Google Scholar
  24. 24.
    H. Allik, T.J.R. Hughes, Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2, 151–157 (1970)CrossRefGoogle Scholar
  25. 25.
    H. Allik, T.J.R. Hughes, Simulation of piezoelectric devices by two- and three-dimensional finite elements. IEEE Trans. UFFC 37, 233–247 (1990)CrossRefGoogle Scholar
  26. 26.
    W.H. Press, S.A. Teukolsky, W.T. Vettering, B.P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations