Advertisement

Coupled Magnetomechanical Systems

  • Manfred KaltenbacherEmail author
Chapter

Abstract

Let us consider a magnetic solenoid valve as depicted in Fig. 11.1.

Keywords

Magnetic Force Magnetic Vector Simulation Domain Flux Line Mechanical Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K.J. Binns, P.J. Lawrenson, C.W. Trowbridge (eds.), The Analytic and Numerical Solution of Electric and Magnetic Fields (Wiley, New York, 1992)Google Scholar
  2. 2.
    D. Rodger, H.C. Lai, P.J. Leonard, Coupled elements for problems involving movement. IEEE Trans. Magn. 26(2), 548–550 (1990)CrossRefGoogle Scholar
  3. 3.
    M. Schinnerl, M. Kaltenbacher, U. Langer, R. Lerch, An efficient method for the numerical simulation of magneto-mechanical sensors and actuators, Euro. J. Appl. Math. (2007) (to be published)Google Scholar
  4. 4.
    G. Wunsch, H.G. Schulz, Elektromagnetische Felder (Verlag Technik, Berlin, 1995)Google Scholar
  5. 5.
    J.L. Coulomb, G. Meunier, Finite element implementation of virtual work principle for magnetic and electric force and torque computation. IEEE Trans. Magn. 20(5), 1894–1896 (1984)CrossRefGoogle Scholar
  6. 6.
    F. Henrotte, A. Nicolet, H. Hedia, A. Genon, W. Legros, Modelling of electromechanical relays taking into account movement and electric circuits. IEEE Trans. Magn. 30(5), 3236–3239 (1994)CrossRefGoogle Scholar
  7. 7.
    M. Kaltenbacher, Numerische Simulation magnetomechanischer Transducer mit Fluidankopplung. Ph.D. thesis, Johannes Kepler University of Linz, (1996)Google Scholar
  8. 8.
    S. Kurz, Die numerische Behandlung elektromechanischer Systeme mit Hilfe der Kopplung der Methode der finiten Elemente und der Randelementmethode. Ph.D. thesis, University of Stuttgart (1998)Google Scholar
  9. 9.
    A. Nysveen, R. Nilssen, Time domain simulation of magnetic systems with a general moving geometry. IEEE Trans. Magn. 33(2), 1394–1397 (1997)CrossRefGoogle Scholar
  10. 10.
    T. Onuki, S. Wakao, T. Yoshizawa, Eddy current computations in moving conductors by the hybrid FE-BE method. IEEE Trans. Magn. 31(3), 1436–1439 (1995)CrossRefGoogle Scholar
  11. 11.
    P.C. Coles, D. Rodger, P.J. Leonard, H.C. Lai, Finite element modelling of 3d moving conductor devices with low conductivity. IEEE Trans. Magn. 32(3), 753–755 (1996)CrossRefGoogle Scholar
  12. 12.
    T. Furukawa, K. Komiya, I. Muta, An upwind Galerkin finite element analysis of linear induction motors. IEEE Trans. Magn. 26(2), 662–665 (1990)CrossRefGoogle Scholar
  13. 13.
    S.-Y. Hahn, J. Bigeon, J.-C. Sabonnadiere, An upwind finite element method for electromagnetic field problems in moving media. Int. J. Numer. Methods Eng. 24, 2071–2086 (1987)CrossRefzbMATHGoogle Scholar
  14. 14.
    N. Ida, Modeling of velocity effects in eddy current applications. J. Appl. Phys. 63(8), 3007–3009 (1988)Google Scholar
  15. 15.
    M. Ito, T. Takahashi, M. Odamura, Up-wind finite element solution of travelling magnetic field problems. IEEE Trans. Magn. 28(2), 1605–1610 (1992)CrossRefGoogle Scholar
  16. 16.
    C. Golovanov, J.-L. Coulomb, Y. Marechal, G. Meunier, 3d mesh connection techniques applied to movement simulation. IEEE Trans. Magn. 34(5), 3359–3362 (1998)CrossRefGoogle Scholar
  17. 17.
    H.C. Lai, D. Rodger, P.J. Leonard, Coupling meshes in 3d problems involving movements. IEEE Trans. Magn. 28(2), 1732–1734 (1992)CrossRefGoogle Scholar
  18. 18.
    Y. Marechal, G. Meunier, J.L. Coulomb, H. Magnin, A general purpose tool for restoring inter-element continuity. IEEE Trans. Magn. 28(2), 1728–1731 (1992)CrossRefGoogle Scholar
  19. 19.
    O. Craiu, N. Dan, E.A. Badea, Numerical analysis of permanent magnet DC motor performances. IEEE Trans. Magn. 31(6), 3500–3502 (1995)CrossRefGoogle Scholar
  20. 20.
    B. Gaspalou, F. Colamartino, C. Marchland, Z. Ren, Simulation of an electromagnetic actuator by a coupled magnetomechanical modelling. COMPEL—Int. J. Comput. Math. Electr. Electron. Eng. 14(4), 203–206 (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    D.-H. Im, C.-E. Kim, Finite element force calculation of a linear induction motor taking account of the movement. IEEE Trans. Magn. 30(5), 3495–3498 (1994)CrossRefGoogle Scholar
  22. 22.
    J.H. Lee, J.C. Kim, D.S. Hyun, Dynamic characteristics analysis of synchronous reluctance motor considering saturation and iron loss by FEM. IEEE Trans. Magn. 34(5), 2629–2632 (1998)CrossRefMathSciNetGoogle Scholar
  23. 23.
    N. Sadowski, Y. Lefevre, M. Lajoie-Mazenc, J. Cros, Finite element torque calculation in electrical machines while considering the movement. IEEE Trans. Magn. 28(2), 1410–1413 (1992)CrossRefGoogle Scholar
  24. 24.
    P.S. Sangha, D. Rodger, Design and analysis of voltage fed axisymmetric actuators. IEEE Trans. Magn. 30(5), 3240–3243 (1994)CrossRefGoogle Scholar
  25. 25.
    B. Bendjima, K. Srairi, M. Feliachi, A coupling model for analysing dynamical behaviours of an electromagnetic forming system. IEEE Trans. Magn. 33(2), 1638–1641 (1997)CrossRefGoogle Scholar
  26. 26.
    K. Srairi, M. Feliachi, Z. Ren, Electromagnetic actuator behavior analysis using finite element and parametrization methods. IEEE Trans. Magn. 31(6), 3497–3499 (1995)CrossRefGoogle Scholar
  27. 27.
    M. Rausch, Numerische Analyse und Computeroptimierung von elektrodynamischen Aktoren—am Beispiel eines elektrodynamischen Lautsprechers. Ph.D. thesis, University of Erlangen-Nuremberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Mechanics and MechatronicsVienna University of TechnologyViennaAustria

Personalised recommendations