Skip to main content

Predictive Use of the Maximum Entropy Production Principle for Past and Present Climates

  • Chapter
  • First Online:
Beyond the Second Law

Part of the book series: Understanding Complex Systems ((UCS))

  • 2761 Accesses

Abstract

In this chapter, we show how the MaxEP hypothesis may be used to build simple climate models without representing explicitly the energy transport by the atmosphere. The purpose is twofold. First, we assess the performance of the MaxEP hypothesis by comparing a simple model with minimal input data to a complex, state-of-the-art General Circulation Model. Next, we show how to improve the realism of MaxEP climate models by including climate feedbacks, focusing on the case of the water-vapour feedback. We also discuss the dependence of the entropy production rate and predicted surface temperature on the resolution of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The uniform relative humidity in version 3 is chosen as the mean relative humidity in the MaxEP v0 case.

References

  1. Peixoto, J.P., Oort, A.H.: Physics of Climate. Springer, New-York (1992)

    Google Scholar 

  2. McGuffie, K., Henderson-Sellers, A.: A Climate Modelling primer. John Wiley (2005)

    Google Scholar 

  3. Goody, R., Yung, Y.: Atmospheric Radiation: Theoretical Basis. Oxford University Press, Oxford (1995)

    Google Scholar 

  4. Holton, J.: An Introduction to Dynamic Meteorology. Academic Press, New York (2004)

    Google Scholar 

  5. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  6. Ambaum, M.H.P.: Thermal Physics of the Atmosphere. Wiley, Chichester (2010)

    Book  Google Scholar 

  7. Holloway, G.: From classical to statistical ocean dynamics. Surv. Geophys. 25, 203–219 (2004)

    Article  Google Scholar 

  8. Johnson, D.: “General coldness of climate models” and the second law: implications for modeling the earth system. J. Climate 10, 2826 (1997)

    Article  Google Scholar 

  9. Lucarini, V.: Thermodynamic efficiency and entropy production in the climate system. Phys. Rev. E 80, 021118 (2009)

    Google Scholar 

  10. Kleidon, A., Lorenz, R. (eds.): Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer, Berlin (2005)

    Google Scholar 

  11. Martyushev, L., Seleznev, V.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)

    Article  MathSciNet  Google Scholar 

  12. Ozawa, H., Ohmura, A., Lorenz, R., Pujol, T.: The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev. Geophys. 41, 1018 (2003)

    Article  Google Scholar 

  13. Bruers, S.: A discussion on maximum entropy production and information theory. J. Phys. A 40, 7441–7450 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A 36, 631–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dewar, R.: Maximum entropy production and non-equilibrium statistical mechanics. In: Kleidon, A., Lorenz, R. (eds.) Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer, Heidelberg (2004)

    Google Scholar 

  16. Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A 40, 9717–9720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ito, T., Kleidon, A.: Entropy production of atmospheric heat transport. In: Kleidon, A., Lorenz, R. (eds.) Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer, Heidelberg (2004)

    Google Scholar 

  18. Kleidon, A., Fraedrich, K., Kirk, E., Lunkeit, F.: Maximum entropy production and the strength of boundary layer exchange in an atmospheric general circulation model. Geophys. Res. Lett. 33, 1627–1643 (2006)

    Article  Google Scholar 

  19. Kleidon, A., Fraedrich, K., Kunz, T., Lunkeit, F.: The atmospheric circulation and states of maximum entropy production. Geophys. Res. Lett. 30, 2223 (2003)

    Article  Google Scholar 

  20. Kunz, T., Fraedrich, K., Kirk, E.: Optimisation of simplified GCMs using circulation indices and maximum entropy production. Clim. Dyn. 30, 803–813 (2008)

    Article  Google Scholar 

  21. Pascale, S., Gregory, J.M., Ambaum, M.H.P., Tailleux, R.: A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn. 38, 1211–1227 (2012)

    Article  Google Scholar 

  22. Paltridge, G.: Global dynamics and climate-a system of minimum entropy exchange. Q. J. R. Meteorol. Soc. 101, 475–484 (1975)

    Article  Google Scholar 

  23. Rodgers, C.: Comments on Paltridge’s “minimum entropy exchange” principle. Q. J. R. Meteorol. Soc. 102, 455–457 (1976)

    Google Scholar 

  24. Gerard, J., Delcourt, D., Francois, L.: The maximum entropy production principle in climate models: application to the faint young sun paradox. Q. J. R. Meteorol. Soc. 116, 1123–1132 (1990)

    Article  Google Scholar 

  25. Grassl, H.: The climate at maximum entropy production by meridional atmospheric and oceanic heat fluxes. Q. J. R. Meteorol. Soc. 107, 153–166 (1981)

    Article  Google Scholar 

  26. Paltridge, G.: The steady-state format of global climate. Q. J. R. Meteorol. Soc. 104, 927–945 (1978)

    Article  Google Scholar 

  27. Wyant, P., Mongroo, A., Hameed, S.: Determination of the heat-transport coefficient in energy-balance climate models by extremization of entropy production. J. Atmos. Sci. 45, 189–193 (1988)

    Article  Google Scholar 

  28. Lorenz, R., Lunine, J., Withers, P., McKay, C.: Titan, Mars and Earth: Entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415–418 (2001)

    Article  Google Scholar 

  29. Jupp, T.E., Cox, P.: MEP and planetary climates: insights from a two-box climate model containing atmospheric dynamics. Phil. Trans. R. Soc. B 365, 1355–1365 (2010)

    Article  Google Scholar 

  30. Herbert, C., Paillard, D., Kageyama, M., Dubrulle, B.: Present and Last Glacial Maximum climates as states of maximum entropy production. Q. J. R. Meteorol. Soc. 137, 1059–1069 (2011)

    Article  Google Scholar 

  31. Lacis, A., Hansen, J.: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci. 31, 118–133 (1974)

    Article  Google Scholar 

  32. Stephens, G.: The parameterization of radiation for numerical weather prediction and climate models. Mon. Wea. Rev. 112, 826–867 (1984)

    Article  Google Scholar 

  33. Dufresne, J.L., Fournier, R., Hourdin, C., Hourdin, F.: Net Exchange Reformulation of Radiative Transfer in the CO2 15 μm Band on Mars. J. Atmos. Sci. 62, 3303–3319 (2005)

    Article  Google Scholar 

  34. McClatchey, R., Selby, J., Volz, F., Fenn, R., Garing, J.: Optical properties of the atmosphere. Air Force Camb. Res., Lab (1972)

    Google Scholar 

  35. Renno, N.: Multiple equilibria in radiative-convective atmospheres. Tellus A 49, 423–438 (1997)

    Article  Google Scholar 

  36. Pierrehumbert, R.: The hydrologic cycle in deep-time climate problems. Nature 419, 191 (2002)

    Article  Google Scholar 

  37. Lenton, T., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.: Tipping elements in the earth’s climate system. Proc. Natl. Aca. Sci. U.S.A. 105, 1786–1793 (2008)

    Article  MATH  Google Scholar 

  38. Roe, G., Baker, M.: Why is climate sensitivity so unpredictable? Science 318, 629 (2007)

    Article  Google Scholar 

  39. Herbert, C., Paillard, D., Dubrulle, B.: Entropy production and multiple equilibria: the case of the ice-albedo feedback. Earth Syst. Dynam. 2, 13–23 (2011)

    Article  Google Scholar 

  40. Marti, O., Braconnot, P., Dufresne, J.L., Bellier, J., Benshila, R., Bony, S., Brockmann, P., Cadule, P., Caubel, A., Codron, F., de Noblet-Decoudre, N., Denvil, S., Fairhead, L., Fichefet, T., Foujols, M.A., Friedlingstein, P., Goosse, H., Grandpeix, J.Y., Guilyardi, E., Hourdin, F., Idelkadi, A., Kageyama, M., Krinner, G., L′evy, C., Madec, G., Mignot, J., Musat, I., Swingedouw, D., Talandier, C.: Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim. Dyn. 34, 1–26 (2010)

    Article  Google Scholar 

  41. IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2007)

    Google Scholar 

  42. Crowley, T.J., North, G.R.: Paleoclimatology. Oxford University Press, Oxford (1996)

    Google Scholar 

  43. Paillard, D., Herbert, C.: Maximum entropy production and time varying problems: the seasonal cycle in a conceptual climate model. Entropy 15, 2846–2860 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Herbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herbert, C., Paillard, D. (2014). Predictive Use of the Maximum Entropy Production Principle for Past and Present Climates. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics