Skip to main content

Earth System Dynamics Beyond the Second Law: Maximum Power Limits, Dissipative Structures, and Planetary Interactions

  • Chapter
  • First Online:
Beyond the Second Law

Part of the book series: Understanding Complex Systems ((UCS))

  • 2797 Accesses

Abstract

Planet Earth is a thermodynamic system far from equilibrium and its functioning—obviously—obeys the second law of thermodynamics, at the detailed level of processes, but also at the planetary scale of the whole system. Here, we describe the dynamics of the Earth system as the consequence of sequences of energy conversions that are constrained by thermodynamics. We first describe the well-established Carnot limit and show how it results in a maximum power limit when interactions with the boundary conditions are being allowed for. To understand how the dynamics within a system can achieve this limit, we then explore with a simple model how different configurations of flow structures are associated with different intensities of dissipation. When the generation of power and these different configuration of flow structures are combined, one can associate the dynamics towards the maximum power limit with a fast, positive and a slow, negative feedback that compensate each other at the maximum power state. We close with a discussion of the importance of a planetary, thermodynamic view of the whole Earth system, in which thermodynamics limits the intensity of the dynamics, interactions strongly shape these limits, and the spatial organization of flow represents the means to reach these limits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dewar, R.C.: Maximum Entropy Production and non-equilibrium statistical mechanics. In: Kleidon, A., Lorenz, R. D. (eds.) Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond, pp. 41–56, Springer, Heidelberg (2005)

    Google Scholar 

  2. Dewar, R.C.: J. Phys. A 38, L371 (2005). doi:10.1088/0305-4470/38/21/L01

    Article  MathSciNet  MATH  Google Scholar 

  3. Niven, R.K.: Phys. Rev. E 80, 021113 (2009)

    Article  Google Scholar 

  4. Dewar, R.C.: Entropy 11(4), 931 (2010)

    Article  Google Scholar 

  5. Niven, R.K.: Phil. Trans. R. Soc. B 365, 1323 (2010)

    Article  Google Scholar 

  6. Ozawa, H., Ohmura, A., Lorenz, R.D., Pujol, T.: Rev. Geophys. 41, 1018 (2003)

    Article  Google Scholar 

  7. Kleidon, A., Lorenz, R.D. (eds.): Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer, Heidelberg (2005)

    Google Scholar 

  8. Kleidon, A. Malhi, Y. Cox, P.M.: Phil. Trans. R. Soc. B 365, 1297 (2010)

    Article  Google Scholar 

  9. Lorenz, R.D. Lunine, J.I., Withers, P.G. McKay, C.P.: Geophys. Res. Lett. 28, 415 (2001)

    Article  Google Scholar 

  10. Lorenz, R.D., Mckay, C.P.: Icarus 165(2), 407 (2003)

    Article  Google Scholar 

  11. Kleidon, A., Fraedrich, K., Kunz, T., Lunkeit, F.: Geophys. Res. Lett. 30, 2223 (2003). doi:10.1029/2003GL018363

    Google Scholar 

  12. Kleidon, A., Fraedrich, K., Kirk, E., Lunkeit, F.: Geophys. Res. Lett. 33, L06706 (2006). doi:10.1029/2005GL025373

    Article  Google Scholar 

  13. Goody, R.: J. Atmos. Sci. 64, 2735 (2007)

    Article  MathSciNet  Google Scholar 

  14. Volk, T.: Clim. Ch. 85, 251 (2007)

    Article  Google Scholar 

  15. Volk, T., Pauluis, O.: Phil. Trans. R. Soc. B 365, 1317 (2010)

    Article  Google Scholar 

  16. Kiehl, J.T., Trenberth, K.E.: Bull. Amer. Meteorol. Soc. 78, 197 (1997)

    Article  Google Scholar 

  17. Kleidon, A.: Phil. Trans. R. Soc. A 370, 1012 (2012)

    Article  Google Scholar 

  18. Kleidon, A.: Clim. Ch. 66, 271 (2004)

    Article  Google Scholar 

  19. Schneider, E.D., Kay, J.J.: Math. Comput. Modeling 19, 25 (1994)

    Article  Google Scholar 

  20. Kleidon, A., Zehe, E., Ehret, U., Scherer, U.: Hydrol. Earth Syst. Sci. 17, 225 (2013)

    Article  Google Scholar 

  21. Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P., Fung, I., Ruedy, R., Lerner, J.: Climate processes and climate sensitivity. Geophys. Monogr. 29 (1984), (American Geophysical Union)

    Google Scholar 

  22. Malkus, W.V.R.: Phys. Fluids 8, 1582 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lorenz, E.N.: Tellus 7, 157 (1955)

    Article  Google Scholar 

  24. Lorenz, E.N.: Dynamics of Climate. In: Pfeffer, R.C. (ed.) pp. 86–92. Pergamon Press, Oxford (1960)

    Google Scholar 

  25. Pauluis, O., Held, I.M.: J. Atmos. Sci. 59, 126 (2002)

    Google Scholar 

  26. Pauluis, O., Held, I.M.: J. Atmos. Sci. 59, 140 (2002)

    Article  Google Scholar 

  27. Pauluis, O.: Water vapor and entropy production in the Earth's atmosphere. In: Kleidon, A., Lorenz, R. D. (eds.) Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond, pp. 173–190, Springer, Heidelberg (2005)

    Google Scholar 

  28. Kleidon, A., Renner, M.: Hydrol. Earth Syst. Sci. 17, 2873–2892 (2013), doi:10.5194/hess-17-2873-2013

  29. Lovelock, J.E.: Nature 207, 568 (1965)

    Article  Google Scholar 

  30. Lovelock, J.E.: Proc. Roy. Soc. Lond. B 189, 167 (1975)

    Article  Google Scholar 

  31. Juretic, D., Zupanovic, P.: The free-energy transduction and entropy production in initial photosynthetic reactions. In: Kleidon, A., Lorenz, R. D. (eds.) Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond, pp. 161–172, Springer, Heidelberg (2005)

    Google Scholar 

  32. Lotka, A.J.: Proc. Natl. Acad. Sci. U.S.A. 8, 147 (1922)

    Article  Google Scholar 

  33. Lotka, A.J.: Proc. Natl. Acad. Sci. U.S.A. 8, 151 (1922)

    Article  Google Scholar 

  34. Prigogine, I.: Science 201, 777 (1978)

    Article  Google Scholar 

  35. Bejan, A., Lorente, S.: Phil. Trans. R. Soc. B 365, 1335 (2010)

    Article  Google Scholar 

  36. West, G.B., Brown, J.H., Enquist, B.J.: Science 276, 122 (1997)

    Article  Google Scholar 

  37. Kleidon, A.: Phys. Life Rev. 7, 424 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research contributes to the Helmholtz Alliance “Planetary Evolution and Life”. The authors thank Roderick Dewar and two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Kleidon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kleidon, A., Zehe, E., Ehret, U., Scherer, U. (2014). Earth System Dynamics Beyond the Second Law: Maximum Power Limits, Dissipative Structures, and Planetary Interactions. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics