Skip to main content

A Theoretical Basis for Maximum Entropy Production

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Maximum entropy production (MaxEP) is a conjectured selection criterion for the stationary states of non-equilibrium systems. In the absence of a firm theoretical basis, MaxEP has largely been applied in an ad hoc manner. Consequently its apparent successes remain something of a curiosity while the interpretation of its apparent failures is fraught with ambiguity. Here we show how Jaynes’ maximum entropy (MaxEnt) formulation of statistical mechanics provides a theoretical basis for MaxEP which answers two outstanding questions that have so far hampered its wider application: What do the apparent successes and failures of MaxEP actually mean physically? And what is the appropriate entropy production that is maximized in any given problem? As illustrative examples, we show how MaxEnt underpins previous applications of MaxEP to planetary climates and fluid turbulence. We also discuss the relationship of MaxEP to the fluctuation theorem and Ziegler’s maximum dissipation principle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The constraints themselves may be perfectly accurate (e.g. global energy balance). In that case it is the completeness of the chosen set that is being tested.

  2. 2.

    If instead we had I 0 > I max(C) then, since I ≤ I max(C) by definition, we would have I < I 0 and so μ = 0.

  3. 3.

    With μ = 0+ (Eq. 3.11), \( S = S(\boldsymbol{\uplambda },\boldsymbol{\upalpha }) \) is a functional of \( {\boldsymbol{\uplambda }} \,{\text{and}}\,{\boldsymbol{\upalpha }} \) alone. We have \( S({\boldsymbol{\uplambda }},{\boldsymbol{\upalpha}}) \le S({\boldsymbol{\uplambda}} = {\mathbf{0}},{\boldsymbol{\upalpha}}) \) because removing a constraint—in this case, the auxiliary constraint (3.7)—cannot lead to a decrease in S. Therefore the MaxEnt solution for p(f) in the case \( {\boldsymbol{\Upphi}^{\text{A}}} \ne {\mathbf{0}} \) has \( {\boldsymbol{\uplambda}} = {\mathbf{0}}. \) Note that we cannot set \( {\boldsymbol{\uplambda}} = {\mathbf{0}} \) in the case \( {\boldsymbol{\Upphi}^{\text{A}}} = {\mathbf{0}} \) (i.e. the case S/AS) because (3.13) would then give I(F) = 0 which contravenes I(F) > I min(C); in this case I(F) is given by (3.15).

  4. 4.

    Paltridge [1] also maximized the vertical flux of latent and sensible heat from ground to atmosphere in each zone. However, this additional constraint does not alter the MaxEnt derivation of (3.19) as the appropriate EP function for predicting the meridional flux.

  5. 5.

    Note that under \( \varvec{u} \to -\varvec{u},\varvec{v} \to - 2U\left( z \right)\hat{\varvec{x}} - \varvec{v} \) so that v x v z  → v x v z  + 2U(z)v z , and since ∥v z ∥ = 0 the terms involving v x v z do not contribute to Φ A1 (z) or Φ A2 .

  6. 6.

    In fact with d so defined, the fluctuation theorem is a purely mathematical result (see Chap. 1, Footnote 12). As we have seen, the physical interpretation of \( \langle d\rangle \) as entropy production emerges in MaxEnt through the physical constraints that determine p(f).

  7. 7.

    For an alternative perspective, see Chap. 5. See also Chap. 1, Sect. 1.4.5.

  8. 8.

    Here we assume units such that Boltzmann’s constant equals 1.

References

  1. Paltridge, G.W.: Global dynamics and climate—a system of minimum entropy exchange. Q. J. Roy. Meteorol. Soc. 101, 475–484 (1975); The steady-state format of global climate. Ibid. 104, 927–945 (1978); Thermodynamic dissipation and the global climate system. Ibid. 107, 531–547 (1981)

    Google Scholar 

  2. Lorenz, R.D., Lunine, J.I., Withers, P.G., McKay, C.P.: Titan, mars and earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415–418 (2001)

    Article  Google Scholar 

  3. Ozawa, H., Shimokawa, S., Sakuma, H.: Thermodynamics of fluid turbulence: a unified approach to the maximum transport properties. Phys. Rev. E 64, 026303 (2001)

    Article  Google Scholar 

  4. Malkus, W.V.R.: Borders of disorders: in turbulent channel flow. J. Fluid Mech. 489, 185–198 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hill, A.: Entropy production as a selection rule between different growth morphologies. Nature 348, 426–428 (1990)

    Article  Google Scholar 

  6. Martyushev, L.M., Serebrennikov, S.V.: Morphological stability of a crystal with respect to arbitrary boundary perturbation. Tech. Phys. Lett. 32, 614–617 (2006)

    Article  Google Scholar 

  7. Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. Comp. Biol. Chem. 27, 541–553 (2003)

    Article  MATH  Google Scholar 

  8. Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182 (2006)

    Article  Google Scholar 

  9. Dewar, R.C.: Maximum entropy production and plant optimization theories. Phil. Trans. R. Soc. B 365, 1429–1435 (2010)

    Article  Google Scholar 

  10. Franklin, O., Johansson, J., Dewar, R.C., Dieckmann, U., McMurtrie, R.E., Brännström, Å., Dybzinski, R.: Modeling carbon allocation in trees: a search for principles. Tree Physiol. 32, 648–666 (2012)

    Article  Google Scholar 

  11. Main, I.G., Naylor, M.: Maximum entropy production and earthquake dynamics. Geophys. Res. Lett. 35, L19311 (2008)

    Article  Google Scholar 

  12. Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1–45 (2006)

    Article  MathSciNet  Google Scholar 

  13. Essex, C.: Radiation and the irreversible thermodynamics of climate. J. Atmos. Sci. 41, 1985–1991 (1984)

    Article  Google Scholar 

  14. Pascale, S., Gregory, J.M., Ambaum, M.H.P., Tailleux, R.: A parametric sensitivity study of entropy production and kinetic energy dissipation using the FAMOUS AOGCM. Clim. Dyn. 38, 1211–1227 (2012)

    Article  Google Scholar 

  15. Kerswell, R.R.: Upper bounds on general dissipation functionals in turbulent shear flows: revisiting the ‘efficiency’ functional. J. Fluid Mech. 461, 239–275 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meysman, F.J.R., Bruers, S.: Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Phil. Trans. R. Soc. B 365, 1405–1416 (2010)

    Article  Google Scholar 

  17. Kawazura, Y., Yoshida, Z.: Entropy production rate in a flux-driven self-organizing system. Phys. Rev. E 82(066403), 1–8 (2010)

    MathSciNet  Google Scholar 

  18. Dewar, R.C.: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: Don’t shoot the messenger. Entropy 11, 931–944 (2009)

    Article  Google Scholar 

  19. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957); Information theory and statistical mechanics II. Ibid. 108, 171–190 (1957)

    Google Scholar 

  20. Gibbs, J.W.: Elementary Principles of Statistical Mechanics. Ox Bow Press, Woodridge (1981). (Reprinted)

    Google Scholar 

  21. Shannon, C.E.: A mathematical theory of communication. Bell Sys. Tech. J. 27, 379–423, 623–656 (1948)

    Google Scholar 

  22. Shannon, C.E., Weaver, W.: The mathematical theory of communication. University of Illinois Press, Urbana (1949)

    MATH  Google Scholar 

  23. Jaynes, E.T.: Probability Theory: the Logic of Science. Bretthorst, G.L. (ed.). CUP, Cambridge (2003)

    Google Scholar 

  24. Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Info. Theor. 26, 26–37 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jaynes, E.T.: Where do we stand on maximum entropy? In: Levine, R.D., Tribus, M. (eds.) The maximum entropy formalism, pp. 15–118. MIT Press, Cambridge (1978)

    Google Scholar 

  26. Dewar, R.C.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dewar, R.C.: Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, L371–L381 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bruers, S.A.: Discussion on maximum entropy production and information theory. J. Phys. A: Math. Theor. 40, 7441–7450 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grinstein, G., Linsker, R.: Comments on a derivation and application of the ‘maximum entropy production’ principle. J. Phys. A: Math. Theor. 40, 9717–9720 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113 (2009)

    Article  Google Scholar 

  31. Virgo, N.: From maximum entropy to maximum entropy production: a new approach. Entropy 12, 107–126 (2010)

    Article  Google Scholar 

  32. Evans, D.J., Searle, D.J.: The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2005)

    Article  Google Scholar 

  33. Seifert, U.: Stochastic thermodynamics: principles and perspectives. Eur. Phys. J. B 64, 423–431 (2008)

    Article  MATH  Google Scholar 

  34. Sevick, E.M., Prabhakar, R., Williams, S.R., Searles, D.J.: Fluctuation theorems. Ann Rev. Phys. Chem. 59, 603–633 (2008)

    Article  Google Scholar 

  35. Ziegler, H.: An introduction to thermomechanics. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  36. Jaynes, E.T.: Information theory and statistical mechanics. In: Ford, K. (ed.) Statistical Physics, pp. 181–218. Benjamin, New York (1963)

    Google Scholar 

  37. Niven, R.K.: Non-asymptotic thermodynamic ensembles. Europhys. Lett. 86, 20010 (2009)

    Article  Google Scholar 

  38. Niven, R.K., Grendar, M.: Generalized classical, quantum and intermediate statistics and the Pólya urn model. Phys. Lett. A 373, 621–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, pp 481–492. UCA, Berkeley (1951)

    Google Scholar 

  40. Paltridge, G.W., Farquhar, G.D., Cuntz, M.: Maximum entropy production, cloud feedback, and climate change. Geophys. Res. Lett. 34, L14708 (2007)

    Article  Google Scholar 

  41. Malkus, W.V.R.: The heat transport and spectrum of thermal turbulence. Proc. R. Soc. 225, 196–212 (1954); Outline of a theory for turbulent shear flow. J. Fluid Mech. 1, 521–539 (1956)

    Google Scholar 

  42. Malkus, W.V.R.: Statistical stability criteria for turbulent flow. Phys. Fluids 8, 1582–1587 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Giles, M.J.: Turbulence renormalization group calculations using statistical mechanics methods. Phys. Fluid. 6, 595–604 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shimokawa, S., Ozawa, H.: On the thermodynamics of the oceanic general circulation: Irreversible transition to a state with higher rate of entropy production. Q. J. Roy. Meteorol. Soc. 128, 2115–2128 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Isaac Newton Institute for Mathematical Sciences (to RD; Programme CLP: Mathematical and Statistical Approaches to Climate Modelling and Prediction, Aug–Dec 2010) and Fondazione Cariparo (to AM) is gratefully acknowledged. RD thanks the participants of the annual MaxEP workshops (2003–2011) for many stimulating discussions and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick C. Dewar .

Editor information

Editors and Affiliations

Appendices

Appendix A: Identifying the Lagrange Multiplier λ (Sect. 3.4.1)

In Sect. 3.4.1 (zonal energy balance models), the MaxEnt p.d.f. is p(f) ∝ e A where \( A = \sum\nolimits_{i} {\left( {\upalpha \Updelta f_{i} + \uplambda_{i} f_{i} } \right)} \), where f i is the meridional heat flux from zone i − 1 to zone i, ∆f i  = f i  − f i+1 is the heat convergence into zone i, and \( \upalpha \) and \( {\uplambda_{i} } \) are the Lagrange multipliers associated with the global energy balance constraint \( \sum\nolimits_{i} {\Updelta F_{i} = \, 0} \) and the trial flux F i , respectively. Here we show that \( {\uplambda_{i} } \) may be identified with the gradient in inverse temperature –∆(1/T i ) = 1/T i+1 – 1/T i . Consider local heat balance over some finite time interval (0, τ). Let f i and Δf i denote time-averaged rates over (\( 0,\uptau \)), and let u i (t) denote the heat content of zone i at time t. Local heat balance then gives \( \left\{ {u_{i} \left( \uptau \right) \, -u_{i} \left( 0 \right)} \right\}/\uptau = \Updelta f_{i} - r_{i} \) where r i  = f LW,i ↑ – F SW,i ↓ is the net radiation leaving zone i, with ensemble average R i  = ∆F i . By introducing constraints on the ensemble averages of u i (τ) in each zone, for which the corresponding Lagrange multipliers may be identified withFootnote 8 −1/T i we then have \( A = \, -\sum\nolimits_{i} {u_{i} \left( \uptau \right)/T_{i} } + \sum\nolimits_{i} {\left( {\upalpha \Updelta f_{i} + \uplambda_{i} f_{i} } \right)} \) which from heat balance can be rewritten as \(A = - \frac{1}{2}\sum\nolimits_{i} {\left\{ {u_{i} \left( 0 \right) + u_{i} \left( \uptau \right)} \right\}/T_{i} } + \sum\nolimits_{i} {\Updelta f_{i} \left( {\upalpha -\frac{1}{2}\uptau /T_{i} } \right)} + \frac{1}{2}\uptau \sum\nolimits_{i} {r_{i} /T_{i} } + \sum\nolimits_{i} {\uplambda_{i} f_{i} }\). Summing by parts reduces this to \( A = - \frac{1}{2}\sum\nolimits_{i} {\left\{ {u_{i} \left( 0 \right) + u_{i} \left( \uptau \right)} \right\}} /T_{i} + \sum\nolimits_{i} {f_{i} \left( {\uplambda_{i} + \frac{1}{2} \uptau \Updelta \left( { 1/T_{i} } \right)} \right)} + \frac{1}{2} \uptau \sum\nolimits_{i} {r_{i} /T_{i}}. \) Since knowledge of the radiation fluxes R i is equivalent to knowledge of the heat fluxes F i , the second term in A is redundant in the presence of the third term, implying \( \uplambda_{i} = -\frac{1}{2} \uptau \Updelta \left( { 1/T_{i} } \right) \) as we wished to show. Substituting this into Eq. (3.19) for the mean entropy production then gives \( I = 2\sum\nolimits_{i} {\uplambda_{i} F_{i} \propto } -\sum\nolimits_{i} {F_{i} \Updelta \left( { 1/T_{i} } \right)} = \sum\nolimits_{i} {\Updelta F_{i} /T_{i} .} \)

Appendix B: Identifying the Lagrange Multiplier α1(z) (Sect. 3.4.2)

In Sect. 3.4.2.1 (shear turbulence in plane Couette flow), the MaxEnt p.d.f. is p(f) ∝ e A where \( A = \left\langle {\upalpha_{ 1} \left( z \right)(\partial_{z} \overline{u}_{x} - \overline{{v_{x} v_{z} }} + \left\langle {v_{x} v_{z} } \right\rangle + Re)} \right\rangle + \upalpha_{ 2} (\left\langle {\partial_{j} u_{i} \partial_{j} u_{i} } \right\rangle - Re^{ 2} - Re\left\langle {v_{x} v_{z} } \right\rangle ) \). Ignoring the fluctuation terms involving v x v z and setting \( \varvec{u} = U(z)\hat{\varvec{x}} \) (mean-field approximation) yields \( A = \int {{\text{d}}z\{ \upalpha_{ 1} \left( z \right)U^{\prime } \left( z \right) + \upalpha_{ 2} U^{\prime } \left( z \right)^{ 2} \} } \) where we have dropped the constant terms involving Re and Re 2. The action A is stationary with respect to U(z) when \( \upalpha \) 1(z) + 2\( \upalpha \) 2 \( U^{\prime } \)(z) = c with c constant. Substituting this into Eq. (3.25) for the mean entropy production gives \( I_{PCF} = { 2}\int {{\text{d}}z\upalpha_{ 1} \left( z \right)U^{\prime } \left( z \right) \propto \int {{\text{d}}zU^{\prime } \left( z \right)^{ 2} } } \) (Eq. 3.26), where we have dropped the constant term \( c\int {{\text{d}}zU^{\prime } \left( z \right) \, = -cRe.} \) Thus effectively we can set \( \upalpha \) 1(z) ∝ \( U^{\prime } \)(z) in (3.25). A similar argument applies to plane Poiseuille flow, leading to the same expression for I PPF (Eq. 3.30).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dewar, R.C., Maritan, A. (2014). A Theoretical Basis for Maximum Entropy Production. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics