Skip to main content

Maximum Entropy Production and Maximum Shannon Entropy as Germane Principles for the Evolution of Enzyme Kinetics

Part of the Understanding Complex Systems book series (UCS)

Abstract

There have been many attempts to use optimization approaches to study the biological evolution of enzyme kinetics. Our basic assumption here is that the biological evolution of catalytic cycle fluxes between enzyme internal functional states is accompanied by increased entropy production of the fluxes and increased Shannon information entropy of the states. We use simplified models of enzyme catalytic cycles and bioenergetically important free-energy transduction cycles to examine the extent to which this assumption agrees with experimental data. We also discuss the relevance of Prigogine’s minimal entropy production theorem to biological evolution.

Keywords

  • Entropy Production
  • Metabolic Flux
  • Forward Rate
  • Proton Motive Force
  • Thermodynamic Force

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40154-1_19
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-40154-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 19.1
Fig. 19.2
Fig. 19.3
Fig. 19.4
Fig. 19.5
Fig. 19.6

Notes

  1. 1.

    Expressions given in [29] involve printing errors.

References

  1. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Wiley, New York (1967)

    Google Scholar 

  2. Martyushev, L.M., Seleznev, V.D.: Maximum entropy production principle in physics, chemistry and biology. Phys. Rev. 426, 1–45 (2006)

    MathSciNet  Google Scholar 

  3. Onsager, L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    CrossRef  Google Scholar 

  4. Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    CrossRef  MATH  Google Scholar 

  5. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley, New York (1971)

    MATH  Google Scholar 

  6. Voet, D., Voet, J.G.: Biochemistry, 3rd edn. Wiley, New York (2004)

    Google Scholar 

  7. Ross, J., Vlad, M.O.: Exact solutions for the entropy production rate of several irreversible processes. J. Phys. Chem. A 109, 10607–10612 (2005)

    CrossRef  Google Scholar 

  8. Metzner, H.: Bioelectrochemistry of photosynthesis: a theoretical approach. Bioelectrochem. Bioenerg. 13, 183–190 (1984)

    CrossRef  Google Scholar 

  9. Andriesse, C.D., Hollestelle, M.J.: Minimum entropy production in photosynthesis. Biophys. Chem. 90, 249–253 (2001)

    CrossRef  Google Scholar 

  10. Andriesse, C.D.: On the relation between stellar mass and luminosity. Astrophys. J. 539, 364–365 (2000)

    CrossRef  Google Scholar 

  11. Jennings, R.C., Engelmann, E., Garlaschi, F., Casazza, A.P., Zucchelli, G.: Photosynthesis and negative entropy production. Biochim. Biophys. Acta Bioenerg. 1709, 251–255 (2005)

    CrossRef  Google Scholar 

  12. Lavergne, L.: Commentary on photosynthesis and negative entropy production by Jennings and coworkers. Biochim. Biophys. Acta 1757, 1453–1459 (2006)

    CrossRef  Google Scholar 

  13. Knox, R.S., Parson, W.W.: Entropy production and the second law in photosynthesis. Biochim. Biophys. Acta 1767, 1189–1193 (2007)

    CrossRef  Google Scholar 

  14. Heinrich, R., Schuster, S., Holzhütter, H.G.: Mathematical analysis of enzymic reaction systems using optimization principles. Eur. J. Biochem. 201, 1–21 (1991)

    CrossRef  Google Scholar 

  15. Albery, W.J., Knowles, J.R.: Evolution of enzyme function and the development of catalytic efficiency. Biochemistry 15, 5631–5640 (1976)

    CrossRef  Google Scholar 

  16. Pettersson, G.: Effect of evolution on the kinetic properties of enzymes. Eur. J. Biochem. 184, 561–566 (1989)

    CrossRef  Google Scholar 

  17. Christensen, H., Martin, M.T., Waley, G.: β-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem. J. 266, 853–861 (1990)

    Google Scholar 

  18. Pettersson, G.: Evolutionary optimization of the catalytic efficiency of enzymes. Eur. J. Biochem. 206, 295–298 (1992)

    CrossRef  Google Scholar 

  19. Suarez, R.K., Staples, J.F., Lighton, J.R.B., West, T.G.: Relationships between enzymatic flux capacities and metabolic flux rates in muscles: nonequilibrium reactions in muscle glycolysis. Proc. Natl. Acad. Sci. 94, 7065–7069 (1997)

    CrossRef  Google Scholar 

  20. Taylor, C.R., Weibel, E.R.: Design of the mammalian respiratory system. I. Problem and strategy. Respir. Physiol. 44, 1–10 (1981)

    CrossRef  Google Scholar 

  21. Diamond, J.M.: Evolution of biological safety factors: a cost/benefit analysis. In: Weibel, E.R., Taylor, C.R., Bolis, L.C. (eds.) Principles of Animal Design: The Optimization and Symmorphosis Debate, pp. 21–27. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  22. Suarez, R.K., Darveau, C.A.: Multi-level regulation and metabolic scaling. J. Exp. Biol. 208, 1627–1634 (2005)

    CrossRef  Google Scholar 

  23. Reaves, M.L., Rabinowitz, J.L.: Metabolomics in systems microbiology. Curr. Opin. Biotechnol. 22, 17–25 (2011)

    CrossRef  Google Scholar 

  24. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    CrossRef  Google Scholar 

  25. Dewar, R.C., Maritan, A.: The theoretical basis of maximum entropy production. In: Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K. (eds.) Beyond the Second Law: Entropy Production and Non-Equilibrium Systems. Springer, Berlin (2013)

    Google Scholar 

  26. Dobovišek, A., Županović, P., Brumen, M., Bonačić-Lošić, Ž., Kuić, D., Juretić, D.: Enzyme kinetics and the maximum entropy production principle. Biophys. Chem. 154, 49–55 (2011)

    CrossRef  Google Scholar 

  27. Hill, T.L.: Free Energy Transduction in Biology. The Steady State Kinetic and Thermodynamic Formalism. Academic Press, New York (1977)

    Google Scholar 

  28. Meszena, G., Westerhoff, H.V.: Non-equilibrium thermodynamics of light absorption. J. Phys. A: Math. Gen. 32, 301–311 (1999)

    CrossRef  MATH  Google Scholar 

  29. Juretić, D., Županović, P.: Photosynthetic models with maximum entropy production in irreversible charge transfer steps. J. Comp. Biol. Chem. 27, 541–553 (2003)

    CrossRef  MATH  Google Scholar 

  30. Lukács, A., Papp, E.: Bacteriorhodopsin photocycle kinetics analyzed by the maximum entropy method. J. Photochem. Photobiol., B 77, 1–16 (2004)

    Google Scholar 

  31. Kakareka, J.W., Smith, P.D., Pohida, T.J., Hendler, R.W.: Simultaneous measurements of fast optical and proton current kinetics in the bacteriorhodopsin photocycle using an enhanced spectrophotometer. J. Biochem. Biophys. Methods 70, 1116–1123 (2008)

    CrossRef  Google Scholar 

  32. Juretić, D., Westerhoff, H.V.: Variation of efficiency with free-energy dissipation in models of biological energy transduction. Biophys. Chem. 28, 21–34 (1987)

    CrossRef  Google Scholar 

  33. Michel, H., Oesterhelt, D.: Electrochemical proton gradient across the cell membrane of Halobacterium halobium: Effect of N, N’-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Biochemistry 19, 4607–4619 (1980)

    CrossRef  Google Scholar 

  34. Boylestad, R.: Introductory Circuit Analysis. Prentice-Hall, Upper Saddle River (1999)

    Google Scholar 

  35. Hendler, R.W., Shrager, R.I., Bose, S.: Theory and practice for finding a correct kinetic model for the bacteriorhodopsin photocycle. J. Phys. Chem. B 105, 3319–3328 (2001)

    CrossRef  Google Scholar 

  36. Chizhov, I., Chernavskii, D.S., Engelhard, M., Mueller, K.H., Zubov, B.V., Hess, B.: Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys. J. 71, 2329–2345 (1996)

    CrossRef  Google Scholar 

  37. Lanyi, J.K.: Proton transfers in the bacteriorhodopsin photocycle. Biochim. Biophys. Acta 1757, 1012–1018 (2006)

    CrossRef  Google Scholar 

  38. Juretić, D., Županović, P.: The free-energy transduction and entropy production in initial photosynthetic reactions. In: Kleidon, A., Lorenz, R.D. (eds.) Non-Equilibrium Thermodynamics and the Production of Entropy, pp. 161–171. Springer, Berlin (2005)

    CrossRef  Google Scholar 

  39. Boyer, P.D.: The ATP synthase –a splendid molecular machine. Ann. Rev. Biochem. 66, 717–749 (1997)

    CrossRef  Google Scholar 

  40. Pänke, O., Rumberg, B.: Kinetic modeling of rotary CF0F1-ATP synthase: storage of elastic energy during energy transduction. Biochim. Biophys. Acta 1412, 118–128 (1999)

    CrossRef  Google Scholar 

  41. Pänke, O., Rumberg, B.: Kinetic modelling of the proton translocating CF0CF1-ATP synthase from spinach. FEBS Lett. 383, 196–200 (1996)

    CrossRef  Google Scholar 

  42. Dewar, R.C., Juretić, D., Županović, P.: The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 430, 177–182 (2006)

    CrossRef  Google Scholar 

  43. Turina, P., Samoray, D., Graeber, P.: H +/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes. Eur. Mol. Biol. Org. J. 22, 418–426 (2003)

    Google Scholar 

  44. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    MathSciNet  CrossRef  MATH  Google Scholar 

  45. Jaynes, E.T.: Information theory and statistical mechanics II. Phys. Rev. 108, 171–190 (1957)

    MathSciNet  CrossRef  Google Scholar 

  46. Prigogine, I., Wiame, J.M.: Biologie et thermodynamique des phénomènes irréversibles. Experientia 2, 451–453 (1946)

    CrossRef  Google Scholar 

  47. Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, Chichester (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Dobovišek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dobovišek, A., Županović, P., Brumen, M., Juretić, D. (2014). Maximum Entropy Production and Maximum Shannon Entropy as Germane Principles for the Evolution of Enzyme Kinetics. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)