Skip to main content

Entropy Production in Planetary Atmospheres and Its Applications

  • Chapter
  • First Online:
Book cover Beyond the Second Law

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Distributions of temperature and longwave radiation are predicted from a state of maximum entropy production (MaxEP) due to meridional heat flux in the atmospheres of the Earth, Mars, Titan and Venus, and the predicted distributions are compared with observational results. In the predictions, we use a multi-box energy balance model that takes into account the effects of obliquity and latitudinal variation of albedo on shortwave absorption. It is found that the predicted distributions are generally in agreement with observations of the Earth, Titan and Venus, suggesting the validity of the MaxEP state for these planets. In the case of Mars, the predicted distributions do not agree well with the observations when compared with those predicted from a state of no meridional heat flux. A simple analysis on advective heat flux using a two-box model shows that the Martian atmosphere is so scant that it cannot carry the heat energy that is necessary for the MaxEP state by advection. These results suggest that the validity of the MaxEP state for a planetary atmosphere is limited when the total amount of atmosphere is not enough to sustain the advective heat flux that is necessary for the MaxEP state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have assumed that the declination δ is constant with respect to daily change of h.

  2. 2.

    A cyclic orbit is assumed in this study. For a more general case with eccentricity see, e.g., [17].

  3. 3.

    In this sense, there do not seem to be multiple maxima for this simple model system with a fixed albedo distribution (cf. [16]).

  4. 4.

    The difference can been seen in the numerical factor in each formulation: 2 in Eq. (11.21) whereas 2(3γ)1/2 ≈ 1.62 in their formulation, with γ = 31/2/π − 1/3 [15]. Their analysis also includes the planetary rotation rate, which turns out to be not important for slowly rotating planets where Eq. (11.18) is approximately valid.

References

  1. Ziegler, H.: Zwei Extremalprinzipien der irreversiblen Thermodynamik. Ing. Arch. 30, 410–416 (1961)

    Article  MathSciNet  Google Scholar 

  2. Paltridge, G.W.: Global dynamics and climate – a system of minimum entropy exchange. Quart. J. R. Met. Soc. 101, 475–484 (1975)

    Article  Google Scholar 

  3. Paltridge, G.W.: The steady-state format of global climate. Quart. J. R. Met. Soc. 104, 927–945 (1978)

    Article  Google Scholar 

  4. Ozawa, H., Ohmura, A., Lorenz, R.D., Pujol, T.: The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev. Geophys. 41, 1018 (2003)

    Article  Google Scholar 

  5. Lorenz, R.D., Lunine, J.I., Withers, P.G., McKay, C.P.: Titan, Mars, and Earth: entropy production by latitudinal heat transport. Geophys. Res. Lett. 28, 415–418 (2001)

    Article  Google Scholar 

  6. Schneider, E.D., Kay, J.J.: Life as a manifestation of the second law of thermodynamics. Math. Comp. Modell. 19, 25–48 (1994)

    Article  Google Scholar 

  7. Ozawa, H., Shimokawa, S., Sakuma, H.: Thermodynamics of fluid turbulence: a unified approach to the maximum transport properties. Phys. Rev. E 64, 026303 (2001)

    Article  Google Scholar 

  8. Shimokawa, S., Ozawa, H.: On the thermodynamics of the oceanic general circulation: irreversible transition to a state with higher rate of entropy production. Q. J. Roy. Meteorol. Soc. 128, 2115–2128 (2002)

    Article  Google Scholar 

  9. Shimokawa, S., Ozawa, H.: Thermodynamics of irreversible transitions in the oceanic general circulation. Geophys. Res. Lett. 34, L12606 (2007). doi:10.1029/2007GL030208

    Article  Google Scholar 

  10. Nohguchi, Y., Ozawa, H.: On the vortex formation at the moving front of lightweight granular particles. Physica D 238, 20–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lorenz, E.N.: Generation of available potential energy and the intensity of the general circulation. In: Pfeffer, R.L. (ed.) Dynamics of climate, pp. 86–92. Pergamon, Oxford (1960)

    Chapter  Google Scholar 

  12. Sawada, Y.: A thermodynamic variational principle in nonlinear non-equilibrium phenomena. Prog. Theor. Phys. 66, 68–76 (1981)

    Article  Google Scholar 

  13. Dewar, R.: Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A 36, 631–641 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Niven, R.K.: Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 80, 021113 (2009)

    Article  Google Scholar 

  15. Jupp, T.E., Cox, P.M.: MEP and planetary climates: insights from a two-box model climate model containing atmospheric dynamics. Phil. Trans. R. Soc. B 365, 1355–1365 (2010)

    Article  Google Scholar 

  16. Budyko, M.I.: The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (1969)

    Article  Google Scholar 

  17. Iqbal, M.: An introduction to solar radiation. Academic Press, New York (1983)

    Google Scholar 

  18. NASA Planetary Fact Sheet. http://nssdc.gsfc.nasa.gov/planetary/factsheet/ (2010)

  19. Fukumura, Y.: A study on entropy production in planetary atmospheres. Hiroshima Univ, Master thesis (2012)

    Google Scholar 

  20. Sellers, W.D.: Physical climatology. Univ. Chicago Press, Chicago (1965)

    Google Scholar 

  21. Barkstrom, B.R., Harrison, E.F., Lee III, R.B.: Earth radiation budget experiment – Preliminary seasonal results. Eos, Trans. Amer. Geophys. Union 71, 297–305 (1990)

    Google Scholar 

  22. Masuda, K.: Personal communication. http//macroscope.world.coocan.jp/ja/edu/clim_sys/erb/lat_seas.html (2003)

  23. North, G.R., Coakley, J.A.: Differences between seasonal and mean annual energy balance model calculations of climate and climate sensitivity. J. Atmos. Sci. 36, 1189–1204 (1979)

    Article  Google Scholar 

  24. Peixoto, J.P., Oort, A.H.: Physics of climate. Amer. Inst. Phys. New York (1992)

    Google Scholar 

  25. Sedlar, J., Shupe, M.D., Tjernström, M.: On the relationship between thermodynamic structure and cloud top, and its climate significance in the arctic. J. Clim. 25, 2374–2393 (2012)

    Article  Google Scholar 

  26. Mars Climate Database. http://www-mars.lmd.jussieu.fr/mars/access.html (2008)

  27. Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S.R., Read, P.L., Huot, J.-P.: Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24175 (1999)

    Article  Google Scholar 

  28. Lewis, S.R., Collins, M., Read, P.L., Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Huot, J.-P.: A climate database for Mars. J. Geophys. Res. 104, 24177–24194 (1999)

    Article  Google Scholar 

  29. Courtin, R., Kim, S.J.: Mapping of Titan’s tropopause and surface temperatures from Voyager IRIS spectra. Planet. Space Sci. 50, 309–321 (2002)

    Article  Google Scholar 

  30. Li, L., Nixon, C.A., Achterberg, R.K., et al.: The global energy balance of Titan. Geophys. Res. Lett. 38, L23201 (2011)

    Google Scholar 

  31. Kliore, A.J.: Recent results on the Venus atmosphere from Pioneer Venus radio occultations. Adv. Space Res. 5, 41–49 (1985)

    Article  Google Scholar 

  32. Rodgers, C.D.: Comments on Paltridge’s ‘minimum entropy exchange’ principle. Quart. J. R. Met. Soc. 102, 455–457 (1976)

    Google Scholar 

  33. Golitsyn, G.S.: A similarity approach to the general circulation of planetary atmospheres. Icurus 13, 1–24 (1970)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their cordial thanks to the organizers of the MaxEP Workshop, Canberra, Sept. 2011, where the motivation for this work has been stimulated. Acknowledgment is also given to Dr. Ralph D. Lorenz for valuable comments on Titan’s atmosphere, to Dr. Robert K. Niven for stimulating our interest in thermodynamics of planetary atmospheres, and to Dr. Ehouarn Millour for sending us the original Mars Climate Database. Valuable comments from two anonymous reviewers are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisashi Ozawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fukumura, Y., Ozawa, H. (2014). Entropy Production in Planetary Atmospheres and Its Applications. In: Dewar, R., Lineweaver, C., Niven, R., Regenauer-Lieb, K. (eds) Beyond the Second Law. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40154-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40154-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40153-4

  • Online ISBN: 978-3-642-40154-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics