Skip to main content

Information Visualization for Chronic Patient’s Data

  • Conference paper
  • 384 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 146)

Abstract

Medical data are generated in large quantities every day. There are many aspects to medical data, including clinical information, administration data, and time granularity, and the number of chronic disease patients increases yearly. However, clinicians have limited time to review and process patient data. Information visualization is therefore required for the efficient management and utilization of the data. The management of chronic disease requires information technology if it is to improve the quality and efficiency of health care. In this paper, we consider the visualization of medical data, focusing on the diversity of medical data and chronic disease care.

Keywords

  • Medical Data
  • Visualization System
  • Test Plan
  • Information Visualization
  • Time Granularity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40140-4_9
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-40140-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss, G.: Welcome to the (almost) digital hospital. IEEE Spectrum 39(3), 44–49 (2002)

    CrossRef  Google Scholar 

  2. Patel, V.L., Kaufman, D.R.: Cognitive Science and Biomedical Informatics. In: Biomedical Informatics: Computer Applications in Health Care and Biomedicine, pp. 133–185. Springer (2006)

    Google Scholar 

  3. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Information Visualization. In: Readings in Information Visualization Using Vision to Think, pp. 1–34. Morgan Kaufmann (1999)

    Google Scholar 

  4. Bauer, D.T., Guerlain, S., Brown, P.J.: The design and evaluation of a graphical display for laboratory data. Journal of the American Medical Informatics Association 17(4), 416–424 (2010)

    CrossRef  Google Scholar 

  5. Institute of Medicine: Clinical practice guidelines: Directions for a new program. National Academy Press, Washington, DC (1990)

    Google Scholar 

  6. Chu, S., Cesnik, B.: Improving clinical pathway design: lessons learned from a computerized prototype. International Journal of Medical Informatics 1(51), 1–11 (1998)

    CrossRef  Google Scholar 

  7. Venkatasubramanian, K.K., Gupta, S.K.S., Jetley,R.P., Jones, P.L.: Interoperable Medical Devices. IEEE Pulse, 16–27 (September/October 2010)

    Google Scholar 

  8. Bodenheimer, T.: Interventions to Improve Chronic Illness Care: Evaluating Their Effectiveness. Disease Management 6(2), 63–71 (2003)

    CrossRef  Google Scholar 

  9. Osheroff, J., Pifer, E.A., Teich, J.M., Sittig, D.F., Jenders, R.A.: Improving Outcomes with Clinical Decision Support: An Implementer’s Guide. Himss (2005)

    Google Scholar 

  10. Institute of Medicine: Applying Evidence to Health Care Delivery. In: Crossing the Quality Chasm: A New Health System for the 21st Century, pp.145–163. National Academy Press, Washington, DC (2001)

    Google Scholar 

  11. Sequist, T.D., Gandhi, T.K., Karson, A.S., Fiskio, J.M., Bugbee, D., Sperling, M., Cook, E.F., John Orav, E.J., Fairchild, D.G., Bates, D.W.: A Randomized Trial of Electronic Clinical Reminders to Improve Quality of Care for Diabetes and Coronary Artery Disease. Journal of the American Medical Informatics Association 4(12), 431–437 (2005)

    CrossRef  Google Scholar 

  12. Koutkias, V.G., Chouvarda, I., Triantafyllidis, A., Malousi, A., Giaglis, D., Maglaveras, N.: A Personalized Framework for Medication Treatment Management in Chronic Care. IEEE Transactions of Information Technology in Biomedicine 2(14), 464–472 (2010)

    CrossRef  Google Scholar 

  13. Baldonado, M.Q.W., Woodruff, A., Kuchinasky, A.: Guidelines for Using Multiple Views in Information Visualization. In: Proceedings of the 5th International Working Conference on Advanced Visual Interfaces, pp.110–119 (2000)

    Google Scholar 

  14. Bui, A.A.T., Aberle, D.R., Kangarloo, H.: TimeLine: Visualizing Integrated Patient Records. IEEE Transactions of Information Technology in Biomedicine 4(11), 462–473 (2007)

    CrossRef  Google Scholar 

  15. Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann Publishers (2001)

    Google Scholar 

  16. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: IEEE Proceedings of the 1st Conference on Visualization, Los Alamitos, pp. 361–378 (1990)

    Google Scholar 

  17. Starren, J., Johnson, S.B.: An object-oriented Taxonomy of Medical Data Presentations. Journal of the American Medical Informatics Association 1(7), 1–20 (2000)

    CrossRef  Google Scholar 

  18. Cois, K.J., Moore, G.W.: Uniqueness of medical data mining. Artificial Intelligence in Medicine 26(1-2), 1–24 (2002)

    CrossRef  Google Scholar 

  19. Kosara, R., Miksch, S.: Metaphors of movement: a visualization and user interface for time-oriented, skeletal plans. Artificial Intelligence in Medicine 2(22), 111–131 (2001)

    CrossRef  Google Scholar 

  20. Plaisant, C., Milash, B., Rose, A., Widoff, S., Shneiderman, B.: LifeLines: Visualizing Personal Histories. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, pp. 221–227 (1996)

    Google Scholar 

  21. Ware, C.: Color. In: Information Visualization: Perception for Design, pp. 103–149. Morgan Kaufmann, San Mateo (2000)

    Google Scholar 

  22. Klimov, D., Shahar, Y., Taieb-Maimon, M.: Intelligent Interactive Visual Exploration of Temporal Associations among Multiple Time-oriented Patient Records. Methods of Information in Medicine 3(48), 254–262 (2009)

    CrossRef  Google Scholar 

  23. Shaher, Y.: A framework for knowledge-based temporal abstraction. Artificial Intelligence 90, 79–133 (1997)

    CrossRef  Google Scholar 

  24. Bito, Y., Kero, R., Matsuo, H., Shintani, Y., Silver, M.: Interactively Visualizing Data Warehouses. Journal of Healthcare Information Management 2(15), 133–142 (2001)

    Google Scholar 

  25. Toyoda, S., Niki, N., Nishitani, H.: SAKURA-Viewer: Intelligent Order History Viewer based on Two-Viewpoint Architecture. IEEE Transactions of Information Technology in Biomedicine 2(11), 141–152 (2007)

    CrossRef  Google Scholar 

  26. Toyoda, S., Niki, N., Nishitani, H.: A Test-Data Management Function for Chronic Condition Patients. In: Proceedings of the 20th IEEE International Symposium on Computer-Based Medical Systems, pp. 707–712 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toyoda, S., Niki, N. (2013). Information Visualization for Chronic Patient’s Data. In: Tanaka, Y., Spyratos, N., Yoshida, T., Meghini, C. (eds) Information Search, Integration and Personalization. ISIP 2012. Communications in Computer and Information Science, vol 146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40140-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40140-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40139-8

  • Online ISBN: 978-3-642-40140-4

  • eBook Packages: Computer ScienceComputer Science (R0)