Skip to main content

Design of the Hydraulic Components

  • Chapter
  • First Online:

Abstract

As per the state of the art, the hydraulic design of the various types of impellers, diffusers, volutes and inlet casing is based on empirical methods such as described in this chapter. The first design created that way is then subject to analysis and optimization by CFD. Even then the accuracy of performance prediction is not always satisfactory. This, because the 3D-flow through the pump depends on the complex shapes of the flow paths given by the inlet casing, impeller and collector. To compound the issue, the interaction of the main flow with the flow in the impeller side rooms can have an unexpectedly large influence on the Q-H-curve and efficiency (an example can be found in chap. 9.1). Always remember that it is the combination of all parameters and shapes of the hydraulic channels which determines the flow patterns – hence performance. In order to reduce the uncertainties of performance prediction, a systematic approach to hydraulic design is advocated. To this end, chapter 7.14 introduces a novel concept for a fully analytical description of the impeller geometry. Prior to starting the hydraulic design all requirements the pump has to fulfill and the boundary conditions imposed should be thoroughly reviewed and documented (see “hydraulic specification” in Chap. 17).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    These impellers are sometimes called “Barske impeller s”, [5, 13, 43].

  2. 2.

    In order to plot the curves for nq=2 to nq=9 on the same graph, a logarithmic scale was chosen for the flow. The shape of the efficiency curves therefore looks unusual.

  3. 3.

    One could also formulate an equation d2=f(n) by inserting Eqs. (T7.3.1 and T7.3.2) into Eq. (T7.3.3). Further equations for ν=f(n) and NPSH=f(n, d2) could be derived to obtain three more complicated equations to determine the three quantities n, d2 and ν.

  4. 4.

    These approximation formulae originate from [B.1].

  5. 5.

    Figure 7.31 was derived from information provided in [B.22].

  6. 6.

    See also Sect. 3.10.3 for the effect of roughness on the pumping action of shrouds.

References

  1. Abbot, I.H., Doenhoff, A.E.: Theory of wing sections. Dover, Mineola (1959)

    Google Scholar 

  2. Aschenbrenner, A.: Untersuchungen über den Einfluß des Abstandes zwischen Lauf- und Leitrad auf das Betriebsverhalten einstufiger Axialpumpenbeschaufelungen. Diss. TU Braunschweig (1965)

    Google Scholar 

  3. Bakir, F. et al. Experimental analysis of an axial inducer influence of the shape of the blade leading edge on the performances in cavitating regime. ASME J. Fluid. Mech. 125, 293–301 (2003)

    Google Scholar 

  4. Balasubramanian, R., Bradshaw, S., Sabine, E.: Influence of impeller leading edge profiles on cavitation and suction performance. Proc 27th Interntl Pump Users Symp, pp. 34–44. Texas A & M (2011)

    Google Scholar 

  5. Barske, U.M.: Development of some unconventional centrifugal pumps. Proc. IMechE. 174, 2 (1960)

    Google Scholar 

  6. Bergen, J.U.: Untersuchungen an einer Kreiselpumpe mit verstellbarem Spiralgehäuse. Diss. TU Braunschweig (1969)

    Google Scholar 

  7. Bernauer, J. et al.: Technik und Anwendung moderner Propellerpumpen. KSB Techn. Ber. 19 (1985)

    Google Scholar 

  8. Böke, J.: Experimentelle und theoretische Untersuchungen der hydraulischen Kräfte an einschaufeligen Laufrädern von Abwasserpumpen unter Berücksichtigung der Änderung geometrischer Parameter. Diss TU Kaiserslautern, Schaker Aachen (2001)

    Google Scholar 

  9. Conrad, O.: Belastungskriterien von Verzögerungsgittern. MTZ. 26(8), 343–348 (1965)

    Google Scholar 

  10. Cooper P at al: Reduction of cavitation damage in a high-energy water injection pump. ASME AJK2011–06092

    Google Scholar 

  11. Cooper, P.: Pump Hydraulics—Advanced Short Course 8. 13th Intl Pump Users Symp, Houston (1996)

    Google Scholar 

  12. Cropper, M., Dupont, P., Parker, J.: Low flow—high pressure. Sulzer. Tech. Rev. 3 + 4, 15–17 (2005)

    Google Scholar 

  13. Dahl, T.: Centrifugal pump hydraulics for low specific speed application. 6th Intl Pump Users Symp., Houston (1989)

    Google Scholar 

  14. Dupont, P., Casartelli, E.: Numerical prediction of the cavitation in pumps. ASME FEDSM2002–31189

    Google Scholar 

  15. Eppler, R.: Airfoil design and data. Springer, Berlin (1990)

    Book  Google Scholar 

  16. Favre, J.N.: Development of a tool to reduce the design time and to improve radial or mixed-flow impeller performance. ASME Fluid Machinery FED. 222, 1–9 (1995)

    Google Scholar 

  17. Flörkemeier, K.H.: Experimentelle Untersuchungen zur Optimierung von Spiralgehäusen für Kreiselpumpen mit tangentialen und radialen Druckstutzen. Diss. TU Braunschweig (1976)

    Google Scholar 

  18. Forstner, M.: Experimentelle Untersuchungen an vor- und rückwärts gepfleilten Axialpumpenschaufeln. Diss. TU Graz (2002)

    Google Scholar 

  19. Furst R, Desclaux, J.: A simple procedure for prediction of NPSH required by inducers. ASME FED. 81, 1–9 (1989)

    Google Scholar 

  20. Glas, W.: Optimierung gepfleilter Pumpenschaufeln mit evolutionären Algorithmen. Diss. TU Graz (2001)

    Google Scholar 

  21. Goltz, I., Kosyna, G., Stark, U., Saathoff, H., Bross, S.: Stall inception phenomena in a single-stage axial pump. 5th European conf on turbomachinery, Prag (2003)

    Google Scholar 

  22. Gülich, J.F.: Blade wheel for a pump. US patent US 8,444,370 B2 (2013)

    Google Scholar 

  23. Hergt, P. et al.: The suction performance of centrifugal pumps—possibilities and limits of improvements. Proc. 13th Intl Pump Users Symp, pp. 13–25. Houston (1996)

    Google Scholar 

  24. Hergt, P.: Design approach for feedpump suction impellers. EPRI Power. Plant. Pumps. Symp. Tampa. (1991)

    Google Scholar 

  25. Hergt, P.: Hydraulic design of rotodynamic pumps. In: Rada Krishna (ed.) Hydraulic design of Hydraulic machinery. Avebury, Aldershot (1997)

    Google Scholar 

  26. Hergt, P.: Lift and drag coefficients of rotating radial and semi-axial cascades. 7th Conf on Fluid Machinery, Budapest, 1983

    Google Scholar 

  27. Hirschi, R.: Prédiction par modélisation numerique tridimensionelle des effects de la cavitation à poche dans les turbomachines hydrauliques. Diss. EPF Lausanne (1998)

    Google Scholar 

  28. Holzhüter, E.: Einfluß der Kavitation auf den erreichbaren Wirkungsgrad bei der Berechnung des Gitters einer Axialkreiselpumpe. Pumpentagung Karlsruhe (1978), K12

    Google Scholar 

  29. Jacobsen, J.K.: NASA space vehicle criteria for liquid rocket engine turbopump inducers. NASA SP-8052 (1971)

    Google Scholar 

  30. Janigro A, Ferrini, F.: Inducer pumps. Von Karman Inst. LS. 61, (1973)

    Google Scholar 

  31. Jensen, R.: Experimentelle Untersuchungen an Einfach- und Doppelspiralen für Kreiselpumpen. Diss. TU Braunschweig (1984)

    Google Scholar 

  32. Johnsen, I.A., Bullock, R.O.: Aerodynamic design of axial-flow compressors. NASA-SP36 (1965)

    Google Scholar 

  33. Kowalik, M.: Inducers-state of the art. World Pumps 32–35 (1993, Feb)

    Google Scholar 

  34. Krieger, P.: Spezielle Profilierung an Laufrädern von Kreiselpumpen zur Senkung von NPSHi. VGB Kraftwerkstechnik. 72, Nr 5 (1992)

    Google Scholar 

  35. Kuhn, K.: Experimentelle Untersuchung einer Axialpumpe und Rohrturbine mit gepfleilten Schaufeln. Diss. TU Graz (2000)

    Google Scholar 

  36. Lapray, J.F.: Seventy-five years of experience in concrete volute pumps. IMechE Paper C439/026 (1992)

    Google Scholar 

  37. Lieblein, S. et al.: Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements. NACA RM 252, (1963)

    Google Scholar 

  38. Lieblein, S.: Incidence and deviation angle correlations for compressor cascades. ASME J. Basic. Engng. 82, 575–587 (1960)

    Google Scholar 

  39. Lieblein, S.: Loss and stall analysis of compressor cascades. ASME J. Basic. Engng. 81, 387–400 (1959)

    Google Scholar 

  40. Lohmberg, A.: Strömungsbeeinflussung in Laufrädern von Radialverdichtern durch Neigung det Schaufeln in Umfangsrichtung. Diss Ruhr-Universität Bochum (2000)

    Google Scholar 

  41. Lomakin, A.A.: Zentrifugal- und Axialpumpen, 2nd edn. Maschinostrojenje, Moskau (1966)

    Google Scholar 

  42. Lottermoser, H.: Anforderungen an die Sicherheitseinspeisepumpen eines Kernkraftwerkes. Pumpentagung Karlsruhe (1984), A2

    Google Scholar 

  43. Maceyka, T.D.: New two-stage concept optimizes high-speed pump performance. IMechE Paper C110/87 (1987)

    Google Scholar 

  44. Meier-Grotian, J.: Untersuchung der Radialkraft auf das Laufrad bei verschiedenen Spiralgehäuseformen, Diss. TU Braunschweig (1972)

    Google Scholar 

  45. NASA (ed.): Liquid rocket engine axial-flow turbopumps. NASA SP-8125 (1978)

    Google Scholar 

  46. Nicklas A, Scianna, S.: Kreiselpumpe an der Grenze zur Verdrängerpumpe. Pumpentagung Karlsruhe, A 5-03 (1992)

    Google Scholar 

  47. NREC-Bulletin

    Google Scholar 

  48. Penninger, G.: Schwingungen und mechanische Belastungen von Axialpumpenschaufeln mit und ohne Pfleilung im kavitierenden off-design Betrieb. Diss. TU Graz (2004)

    Google Scholar 

  49. Radke M. et al.: Einfluß der Laufradgeometrie auf Betriebssicherheit und Lebenszykluskosten von Abwasserpumpen. KSB Technik kompakt. Ausgabe 4 Juni (2001)

    Google Scholar 

  50. Riegels, F.W.: Aerodynamische Profile. Oldenbourg, München (1958)

    MATH  Google Scholar 

  51. Roclawski, H., Hellmann, D.H.: Numerical simulation of a radial multistage centrifugal pump. AIAA 2006-1428, 44th AIAA Aerospace Sciences Meeting (2006)

    Google Scholar 

  52. Roclawski, H., Hellmann, D.H.: Rotor-Stator interaction of a radial centrifugal pump stage with minimum stage diameter. WSEAS Transactions on Fluid Mechanics, 1 (2006) No 5

    Google Scholar 

  53. Roclawski, H., Weiten, A., Hellmann, D.H.: Numerical investigation and optimization of a stator for a radial submersible pump stage with minimum stage diameter ASME FEDSM2006-98181 (2006)

    Google Scholar 

  54. Roclawski, H.: Numerische und experimentelle Untersuchungen an einer radialen Kreiselpumpenstufe mit minimalem Stufendurchmesser. Diss. TU Kaiserslautern (2008)

    Google Scholar 

  55. Schiller, F.: Theoretische und experimentelle Untersuchungen zur Bestimmung der Belastungsgrenze bei hochbelasteten Axialventilatoren. Diss. TU Braunschweig (1984)

    Google Scholar 

  56. Schroeder, C.: Experimentelle Untersuchungen zur Auslegung hochbelasteter Axialventilatoren. Diss. TU Braunschweig (1982)

    Google Scholar 

  57. Sloteman, D.P. et al.: Design of high-energy pump impellers to avoid cavitation instabilities and damage. EPRI Power. Plant. Pumps. Symp. Tampa. (1991)

    Google Scholar 

  58. Spring, H.: Critique of three boiler feedpump suction impellers. ASME Pump. Mach. Symp. FED. 81, 31–39 (1989)

    Google Scholar 

  59. Srivastava, J.: Large vertical concrete sea water pumps. Indian Pump. Manufact. Conf. (1991)

    Google Scholar 

  60. Stark, M.: Auslegungskriterien für radiale Abwasserpumpenlaufräder mit einer Schaufel und unterschiedlichem Energieverlauf. VDI Forschungsheft. 57, Nr. 664 (1991)

    Google Scholar 

  61. Strinning, P. et al.: Strömungstechnischer Vergleich zweier Auslegungskonzepte für Axialpumpen in Tauchmotorausführung. Pumpentagung Karlsruhe (1992), B 4–08

    Google Scholar 

  62. Tsugava, T.: Influence of hub-tip ratio on pump performance. ASME FEDSM97-3712, (1997)

    Google Scholar 

  63. Tsujimoto, Y. et al.: Observation of oscillating cavitation in an inducer. ASME J. Fluids. Engng. 119, 775–781 (1997)

    Google Scholar 

  64. Ulbrich, C.: Experimentelle Untersuchungen der Pumpencharakteristiken und Geschwindigkeitsfelder einer Einschaufel-Kreiselpumpe. Diss. TU Berlin (1997)

    Google Scholar 

  65. Weinig, F.: ZAMM 13, 224 ff. (1933)

    Google Scholar 

  66. Weiten, A.: Vergleich der strömungsmechanischen und rotordynamischen Eigenschaft von Gliederpumpenstufen mit radialen Leiträdern und mit minimalem Stufendurchmesser. Diss. TU Kaiserslautern (2006)

    Google Scholar 

  67. Wesche, W.: Auslegung von Pumpenspiralen mit dicken Gehäusezunge. Techn. Rundschau. Sulzer. 4, 157–161 (1980)

    Google Scholar 

  68. Wesche, W.: Beitrag zur Auslegung von Pumpenspiralen. VDI Ber. 424, (1981)

    Google Scholar 

  69. Wesche, W.: Experimentelle Untersuchungen am Leitrad einer radialen Kreiselpumpe. Diss. TU Braunschweig (1989)

    Google Scholar 

  70. Wesche, W.: Method for calculating the number of vanes at centrifugal pumps. Proc. 6th Conf on Fluid Machinery, pp. 1285–1293. Budapest (1969)

    Google Scholar 

  71. Worster, D.M., Worster, C.: Calculation of 3D-flows in impellers and its use in improving cavitation performance in centrifugal pumps. 2nd Conf on Cavitation, Paper IMechE C203/83 (1983)

    Google Scholar 

  72. Worster, R.C.: The flow in volutes and its effect on centrifugal pump performance. Proc. ImechE. 177(31), 843–875 (1963)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Friedrich Gülich .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gülich, J. (2014). Design of the Hydraulic Components. In: Centrifugal Pumps. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40114-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40114-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40113-8

  • Online ISBN: 978-3-642-40114-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics