Skip to main content

Operation of Centrifugal Pumps

  • Chapter
  • First Online:
Centrifugal Pumps

Abstract

Reliable pump performance can be achieved only if the pump is well integrated into the system. This implies the implementation of adequate controls which ensure that the pump operates in the range between the allowable minimum and maximum flow – in particular if pumps are operated in parallel. Proper procedures must be implemented for start and stop. Transient operation and unsteady phenomena which need attention include: dynamic instabilities caused by an unstable Q-H-curve, water hammer and air-drawing vortices in wet pump installations. Suction pressure transients and distorted approach flow to the pump harbor also potential for trouble. Operation in various brake and turbine modes is discussed in chap. 12. The effects of high viscosity, free gas or large amounts of solids on the performance curves are the topic of chap. 13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a discussion of extremely fast starting transients as encountered in rocket pump applications, refer to [1].

  2. 2.

    The actual figures quoted in the following originate from tests reported in [12, 13, 20]. This information serves for illustration only and is scarcely generic.

  3. 3.

    The correlations in Table 11.3 originate from measurements in specific test stands. Information on the relevance of these correlations in practice is not is available.

  4. 4.

    At extremely high flow rates in excess of Q=16.7 m3/s=60’000 m3/h the limit of the recommended velocity cT=1.7 m/s is exceeded.

References

  1. Barrand, J.P., Picavet, A.: Qualitative flow visualizations during fast start-up of centrifugal pumps. IAHR Symp Valencia, 671–680 (1996)

    Google Scholar 

  2. Bross, S.: Entwicklung neuer Schaufelgitter aus Profilen variabler Geometrie zum Einsatz in Leiträdern drallgeregelter Turbomaschinen. Diss TU Braunschweig, ZLR-Forschungsbericht 93–10 (1993)

    Google Scholar 

  3. Chang, K.S., Lee, D.J.: Experimental investigation of the air entrainment in the shut-down cooling system during mid-loop operation. Ann Nucl Energy. 22(9), 611–619 (1995)

    Article  Google Scholar 

  4. Chaudhry, M.H.: Applied Hydraulic Transients, 2nd ed. Van Nostrand Reinhold, New York (1987)

    Google Scholar 

  5. De Vries, M., Simon, A.: Suctions effects on feedpump performance; a literaturee survey. EPRI Report CS-4204, Aug. (1985)

    Google Scholar 

  6. Dues, M.: Experimentelle Untersuchung der Interferenz zwischen Leitrad und Laufrad einer axialen Kreiselpumpenstufe. Diss. TU Berlin (1994)

    Google Scholar 

  7. Fickelscher, K.: Theoretischer Vergleich der Verstellpropeller- und der Drallregelung bei Kühlwasserpumpen. VDI-Z. 108, 785–789 (1966)

    Google Scholar 

  8. Greitzer, E.M.: The stability of pumping systems. ASME J Fluids Engng. 103, 193–242 (1981)

    Article  Google Scholar 

  9. IMechE Conference on Centrifugal pump low-flow protection (1991)

    Google Scholar 

  10. Jarius, M.: Untersuchung einer Axialgitterschaufel mit Höchstumlenkung durch struktur- und niederfrequente Wölbungsvariation. Diss. TU Berlin (2000)

    Google Scholar 

  11. Jaeger, C.: Fluid Transients. Blackie, Glasgow (1977)

    Google Scholar 

  12. Knauss, J.: Wirbelbildung in Einlaufbauwerken – Luft- und Dralleintrag. DVWK Schrift 63, Paul Parey, ISBN 3-490-06397-X (1983)

    Google Scholar 

  13. Knauss, J. (Hrsg): Swirling flow problems at intakes. IAHR Hydraulic Structures Design Manual, AA Balkema, Rotterdam, ISBN 90 6191 643 7 (1987)

    Google Scholar 

  14. Melville, B.W., Ettema, R., Nakato, T.: Review of flow problems at water intake sumps. Iowa Institute of Hydraulic Research, University of Iowa. EPRI Report RP-3456-01 (1994)

    Google Scholar 

  15. Meschkat, S.: Experimentelle Untersuchung der Auswirkung instationärer Rotor-Stator-Wechselwirkungen auf das Betriebsverhalten einer Spiralgehäusepumpe. Diss. TU Darmstadt (2004)

    Google Scholar 

  16. Nakat, T., et al.: Field-tested solutions to pump vibrations. SHF Symp, 435–442 (1993)

    Google Scholar 

  17. Paterson, I.S., Adam, B.R.: Installation effects on wet pump performance. IMechE C180/77, 63–68 (1977)

    Google Scholar 

  18. Prosser, J.M.: The hydraulic design of pump sumps and intakes. BHRA, Bedford/CIRIA, London (1977)

    Google Scholar 

  19. Radke, M.: Strömungstechnische Untersuchung des Einflusses von Vorleiträdern variabler Geometrie auf das Betriebsverhalten axialer Kreiselpumpen. Fortschrittber VDI Reihe 7, 210 (1992)

    Google Scholar 

  20. Rosenberger, H.: Experimental determination of the rotor impacts of axial pumps in intake structures under distorted approach flow. Thesis TU Kaiserslautern, SAM Forschungsbericht Bd. 5 (2001)

    Google Scholar 

  21. Saalfeld, K.: Vergleichende Darstellung der Regelung von Pumpen durch Vordrall und durch Laufschaufelverstellung. KSB Techn Ber. 7, 22–31 (1963)

    Google Scholar 

  22. Stoll, A.: Speisewasserentgasung beim gleitendem Druck. Siemens Z. 36(8), 608–618 (1962)

    Google Scholar 

  23. Strub, R.A.: Abfall des Saugdruckes von Speisewasserpumpen bei starken Lastschwankungen. Techn Rundschau Sulzer. 3, 41–44 (1960)

    Google Scholar 

  24. Tillak, P., Hellmann, D.H., Rüth, A.: Description of surface vortices with regard to common design criteria of intake chambers. 2nd Intnl Conf on Pumps and Fans, Beijing, 863–874 (1995)

    Google Scholar 

  25. Thorley, A.R.D.: Fluid transients in pipeline systems, 2nd ed. Wiley (2004)

    Google Scholar 

  26. Weinerth, J., Rosenberger, H., Hellmann, D.H., Hausen, W.: Optimierung der Betriebsbedingungen von Wassertransportpumpen mit Hilfe von Modellversuchen. Pump Users Intl Forum Karlsruhe (2000)

    Google Scholar 

  27. Weinerth, J.: Kennlinienverhalten und Rotorbelastung von axialen Kühlwasserpumpen unter Betriebsbedingungen. Diss TU Kaiserslautern, SAM Forschungsbericht Bd. 9 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Friedrich Gülich .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gülich, J. (2014). Operation of Centrifugal Pumps. In: Centrifugal Pumps. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40114-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40114-5_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40113-8

  • Online ISBN: 978-3-642-40114-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics