Abstract
We present a dynamic data structure representing a graph G, which allows addition and removal of edges from G and can determine the number of appearances of a graph of a bounded size as an induced subgraph of G. The queries are answered in constant time. When the data structure is used to represent graphs from a class with bounded expansion (which includes planar graphs and more generally all proper classes closed on topological minors, as well as many other natural classes of graphs with bounded average degree), the amortized time complexity of updates is polylogarithmic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brodal, G.S., Fagerberg, R.: Dynamic representations of sparse graphs. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 342–351. Springer, Heidelberg (1999)
Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and compaction of adjacency matrices. Theoretical Computer Science 86(2), 243–266 (1991)
Downey, R., Fellows, M.: Fixed-parameter tractability and completeness. II. On completeness for W[1]. Theoretical Computer Science 141, 109–131 (1995)
Dvořák, Z., Král’, D.: Algorithms for classes of graphs with bounded expansion. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 17–32. Springer, Heidelberg (2010)
Dvořák, Z., Král’, D., Thomas, R.: Deciding first-order properties for sparse graphs. In: FOCS, pp. 133–142. IEEE Computer Society (2010)
Dvořák, Z., Král’, D., Thomas, R.: Testing first-order properties for subclasses of sparse graphs. ArXiv e-prints, 1109.5036 (January 2013)
Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set. Theoretical Computer Science 326, 57–67 (2004)
Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3, 1–27 (1999)
Eppstein, D., Goodrich, M.T., Strash, D., Trott, L.: Extended dynamic subgraph statistics using h-index parameterized data structures. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 128–141. Springer, Heidelberg (2010)
Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic subgraph statistics. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 278–289. Springer, Heidelberg (2009)
Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48, 1184–1206 (2001)
Kloks, T., Kratsch, D., Müller, H.: Finding and counting small induced subgraphs efficiently. Information Processing Letters 74, 115–121 (2000)
Milenkoviæ, T., Pržulj, N.: Uncovering biological network function via graphlet degree signatures. Cancer Informatics 6, 257 (2008)
Nešetřil, J., Ossona de Mendez, P.: Linear time low tree-width partitions and algorithmic consequences. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, STOC 2006, pp. 391–400. ACM (2006)
Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion I. Decomposition. European J. Combin. 29, 760–776 (2008)
Nešetřil, J., Ossona de Mendez, P.: Structural properties of sparse graphs. Bolyai Society Mathematical Studies 19, 369–426 (2008)
Nešetřil, J., Ossona de Mendez, P.: First order properties on nowhere dense structures. J. Symbolic Logic 75, 868–887 (2010)
Nešetřil, J., Ossona de Mendez, P., Wood, D.: Characterisations and examples of graph classes with bounded expansion. Eur. J. Comb. 33, 350–373 (2012)
Nešetřil, J., Poljak, S.: Complexity of the subgraph problem. Comment. Math. Univ. Carol. 26, 415–420 (1985)
Robins, G., Morris, M.: Advances in exponential random graph (p ∗ ) models. Social Networks 29(2), 169–172 (2007)
Thomassen, C.: Five-coloring graphs on the torus. J. Combin. Theory, Ser. B 62, 11–33 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dvořák, Z., Tůma, V. (2013). A Dynamic Data Structure for Counting Subgraphs in Sparse Graphs. In: Dehne, F., Solis-Oba, R., Sack, JR. (eds) Algorithms and Data Structures. WADS 2013. Lecture Notes in Computer Science, vol 8037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40104-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-40104-6_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40103-9
Online ISBN: 978-3-642-40104-6
eBook Packages: Computer ScienceComputer Science (R0)