Product Intelligence in Warehouse Management: A Case Study

  • Vaggelis Giannikas
  • Wenrong Lu
  • Duncan McFarlane
  • James Hyde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8062)

Abstract

The need for more flexible, adaptable and customer-oriented warehouse operations has been increasingly identified as an important issue by today’s warehouse companies due to the rapidly changing preferences of the customers that use their services. Motivated by manufacturing and other logistics operations, in this paper we argue on the potential application of product intelligence in warehouse operations as an approach that can help warehouse companies address these issues. We discuss the opportunities of such an approach using a real example of a third-party-logistics warehouse company and we present the benefits it can bring in their warehouse management systems.

Keywords

product intelligence warehouse management systems adaptive storing dynamic picking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McFarlane, D., Giannikas, V., Wong, A.C., Harrison, M.: Product intelligence in industrial control: Theory and practice. Annual Reviews in Control 37(1), 69–88 (2013)CrossRefGoogle Scholar
  2. 2.
    Meyer, G.G., Främling, K., Holmström, J.: Intelligent products: A survey. Comput. Ind. 60(3), 137–148 (2009)CrossRefGoogle Scholar
  3. 3.
    Meyer, G.G., Roest, G., Szirbik, N.: Intelligent products for monitoring and control of road-based logistics. In: International Conference of Management and Service Science, pp. 1–6 (2010)Google Scholar
  4. 4.
    Giannikas, V., McFarlane, D.: Product intelligence in intermodal transportation: The dynamic routing problem. In: 3rd International Conference on Dynamics in Logistics (2012)Google Scholar
  5. 5.
    Shi, K., Chen, X., Qin, X.: Pheromone based self-routing of intelligent products in dynamic manufacturing system. In: Zhang, J. (ed.) ICAIC 2011, Part V. CCIS, vol. 228, pp. 260–268. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Chiang, D.M.H., Lin, C.P., Chen, M.C.: The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres. Enterprise Information Systems 5(2), 219–234 (2011)CrossRefGoogle Scholar
  7. 7.
    Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse operation: A comprehensive review. Eur. J. Oper. Res. 177(1), 1–21 (2007)MATHCrossRefGoogle Scholar
  8. 8.
    Faber, N., de Koster, R., van de Velde, S.L.: Linking warehouse complexity to warehouse planning and control structure: an exploratory study of the use of warehouse management information systems. Int. J. Phys. Distrib. Logist. Man. 32(5), 381–395 (2002)CrossRefGoogle Scholar
  9. 9.
    Poon, T., Choy, K., Chow, H.K., Lau, H.C., Chan, F.T., Ho, K.: A rfid case-based logistics resource management system for managing order-picking operations in warehouses. Expert Syst. Appl. 36(4), 8277–8301 (2009)CrossRefGoogle Scholar
  10. 10.
    Liu, T., Liu, J., Liu, B.: Design of intelligent warehouse measure and control system based on zigbee WSN. In: International Conference on Mechatronics and Automation, pp. 888–893 (2010)Google Scholar
  11. 11.
    Chow, H.K., Choy, K.L., Lee, W., Lau, K.: Design of a RFID case-based resource management system for warehouse operations. Expert Syst. Appl. 30(4), 561–576 (2006)CrossRefGoogle Scholar
  12. 12.
    Gu, J., Goetschalckx, M., McGinnis, L.F.: Research on warehouse design and performance evaluation: A comprehensive review. Eur. J. Oper. Res. 203(3), 539–549 (2010)MATHCrossRefGoogle Scholar
  13. 13.
    McFarlane, D., Sarma, S., Chirn, J.L., Wong, C., Ashton, K.: Auto ID systems and intelligent manufacturing control. Eng. Appl. Artif. Intel. 16(4), 365–376 (2003)CrossRefGoogle Scholar
  14. 14.
    Kärkkäinen, M., Holmström, J., Främling, K., Artto, K.: Intelligent products–a step towards a more effective project delivery chain. Comput. Ind. 50(2), 141–151 (2003)CrossRefGoogle Scholar
  15. 15.
    Kim, B.I., Graves, R.J., Heragu, S.S., Onge, A.S.: Intelligent agent modeling of an industrial warehousing problem. IIE Transactions 34(7), 601–612 (2002)Google Scholar
  16. 16.
    Rubrico, J., Ota, J., Higashi, T., Tamura, H.: Scheduling multiple agents for picking products in a warehouse. In: IEEE International Conference on Robotics and Automation, pp. 1438–1443 (2006)Google Scholar
  17. 17.
    Rubrico, J.I., Higashi, T., Tamura, H., Ota, J.: Online rescheduling of multiple picking agents for warehouse management. Robot. Cim.-Int. Manuf. 27(1), 62–71 (2011)CrossRefGoogle Scholar
  18. 18.
    Lu, W., Giannikas, V., McFarlane, D., Hyde, J.: The role of distributed intelligence in warehouse management systems. In: 3rd International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing and Robotics (2013)Google Scholar
  19. 19.
    Koster, R.D., Le-Duc, T., Roodbergen, K.J.: Design and control of warehouse order picking: A literature review. Eur. J. Oper. Res. 182(2), 481–501 (2007)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vaggelis Giannikas
    • 1
  • Wenrong Lu
    • 1
  • Duncan McFarlane
    • 1
  • James Hyde
    • 2
  1. 1.Institute for ManufacturingUniversity of CambridgeCambridgeUK
  2. 2.James & James Fulfilment Ltd.CambridgeUK

Personalised recommendations