Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields

  • Nelly Fazio
  • Rosario Gennaro
  • Irippuge Milinda Perera
  • William E. SkeithIII
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8043)

Abstract

A long-standing open problem in cryptography is proving the existence of (deterministic) hard-core predicates for the Diffie-Hellman problem defined over finite fields. In this paper, we make progress on this problem by defining a very natural variation of the Diffie-Hellman problem over \(\mathbb{F}_{p^2}\) and proving the unpredictability of every single bit of one of the coordinates of the secret DH value.

To achieve our result, we modify an idea presented at CRYPTO’01 by Boneh and Shparlinski [4] originally developed to prove that the LSB of the elliptic curve Diffie-Hellman problem is hard. We extend this idea in two novel ways:
  1. 1

    We generalize it to the case of finite fields \(\mathbb{F}_{p^2}\);

     
  2. 2

    We prove that any bit, not just the LSB, is hard using the list decoding techniques of Akavia et al. [1] (FOCS’03) as generalized at CRYPTO’12 by Duc and Jetchev [6].

     
In the process, we prove several other interesting results:
  • Our result also hold for a larger class of predicates, called segment predicates in [1];

  • We extend the result of Boneh and Shparlinski to prove that every bit (and every segment predicate) of the elliptic curve Diffie-Hellman problem is hard-core;

  • We define the notion of partial one-way function over finite fields \(\mathbb{F}_{p^2}\) and prove that every bit (and every segment predicate) of one of the input coordinates for these functions is hard-core.

Keywords

Hard-Core Bits Diffie-Hellman Problem Finite Fields Elliptic Curves 

References

  1. 1.
    Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decoding. In: IEEE Symposium on Foundations of Computer Science—FOCS, pp. 146–157 (2003)Google Scholar
  2. 2.
    Alexi, W., Chor, B., Goldreich, O., Schnorr, C.: Rsa and rabin functions: Certain parts are as hard as the whole. SIAM Journal on Computing 17(2), 194–209 (1988)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudorandom bits. SIAM Journal on Computing 13(4), 850–864 (1984)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Boneh, D., Shparlinski, I.E.: On the unpredictability of bits of the elliptic curve diffie–hellman scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 201–212. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on Information Theory IT-22(6), 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Duc, A., Jetchev, D.: Hardness of computing individual bits for one-way functions on elliptic curves. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 832–849. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Fazio, N., Gennaro, R., Perera, I.M., Skeith III, W.E.: Hard-core predicates for a diffie-hellman problem over finite fields. Cryptology ePrint Archive, Report 2013/134 (2013)Google Scholar
  8. 8.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: ACM Symposium on Theory of Computing—STOC, pp. 25–32 (1989)Google Scholar
  9. 9.
    Morillo, P., Ràfols, C.: The security of all bits using list decoding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 15–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Näslund, M.: All bits in ax + b mod p are hard. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 114–128. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Shoup, V.: Efficient computation of minimal polynomials in algebraic extensions of finite fields. In: Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, pp. 53–58. ACM (1999)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Nelly Fazio
    • 1
    • 2
  • Rosario Gennaro
    • 1
    • 2
  • Irippuge Milinda Perera
    • 2
  • William E. SkeithIII
    • 1
    • 2
  1. 1.The City College of CUNYUSA
  2. 2.The Graduate Center of CUNYUSA

Personalised recommendations