Abstract
The central computation in atomistic, quantum transport simulation consists in solving the Schrödinger equation several thousand times with non-equilibrium Green’s function (NEGF) equations. In the NEGF formalism, a numerical linear algebra problem is identified related to the computation of a sparse inverse subset of general sparse unsymmetric matrices. The computational challenge consists in computing all the diagonal entries of the Green’s functions, which represent the inverse of the electron Hamiltonian matrix. Parallel upward and downward traversals of the elimination tree are used to perform these computations very efficiently and reduce the overall simulation time for realistic nanoelectronic devices. Extensive large-scale numerical experiments on the CRAY-XE6 Monte Rosa at the Swiss National Supercomputing Center and on the BG/Q at the Argonne Leadership Computing Facility are presented.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Cui, Y., Zhong, Z., Wang, D., Wang, W., Lieber, C.: High performance silicon nanowire field effect transistors. Nano Letters 3, 149–152 (2003)
Singh, N., Agarwal, A., Bera, L., Liow, T., Yang, R., Rustagi, S., Tung, C., Kumar, R., Lo, G., Balasubramanian, N., Kwong, D.: High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices. IEEE Electron Device Letters 27, 383–386 (2006)
Datta, S.: Electronic transport in mesoscopic systems. Press Syndicate University of Cambridge, Cambridge (1995)
Cauley, S., Jain, J., Koh, C., Balakrishnan, V.: A scalable distributed method for quantum-scale device simulation. J. Appl. Phys. 101, 123715 (2007)
Luisier, M., Klimeck, G., Schenk, A., Fichtner, W.: Atomistic simulation of nanowires in the sp 3 d 5 s * tight-binding formalism: from boundary conditions to strain Calculations. Phys. Rev. B 74, 205323 (2006)
Brandbyge, M., Mozos, J., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 74, 165401 (2002)
Lake, R., Klimeck, G., Bowen, R., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845–7869 (1997)
Svizhenko, A., Anantram, M., Govindan, T., Biegel, R., Venugopal, R.: Two-dimensional quantum mechanical modeling of nanotransistors. J. Appl. Phys. 91, 2343–2354 (2002)
Li, S., Ahmed, S., Klimeck, G., Darve, E.: Computing entries of the inverse of a sparse matrix using the FIND algorithm. J. Comp. Phys. 227, 9408–9427 (2008)
Petersen, D.A., Song, L., Stokbro, K., Sorensen, H.H.B., Hansen, P.C., Skelboe, S., Darve, E.: A Hybrid Method for the Parallel Computation of Green’s Functions. J. Comp. Phys. 228(14), 5020–5039 (2009)
Duff, I., Erishman, A.: Sparsity structure and Gaussian elimination. ACM SIGNUM Newsletter 23, 2–8 (2006)
Erishman, A., Tinney, W.: On computing certain elements of the inverse of a sparse matrix. Comm. ACM 18, 177 (1975)
Lin, L., Lu, L., Ying, J.: Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Comm. Math. Sci. 7, 755–777 (2009)
Lin, L., Yang, C.: Selinv - an algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. on Math. Software 37 (2011)
Slater, J., Koster, G.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)
Takahashi, L., Fagan, J., Chin, M.: Formation of a sparse bus impedance matrix and its application to short circuit study. In: Proc. 8th PICA Conference, Minneapolis, Minnesota, pp. 63–69 (1973)
Campbell, Y., Davis, T.: Computing the Sparse Inverse Subset: an Inverse Multifrontal Approach. Technical Report TR-95-021, Computer and Information Sciences Department, University of Florida (1995)
Amestoy, P., Duff, I., Robert, Y., Rouet, F., Ucar, B.: On Computing Inverse Entries of a Sparse Matrix in an Out-of-Core Environment. Technical Report TR/PA/10/59, CERFACS, Toulouse, France (2010)
Slavova, T.: Parallel Triangular Solution in the Out-of-Core Multifrontal Approach for Solving Large Sparse Linear Systems. Ph.D. dissertation, Institut National Polytechnique de Toulouse, Toulouse, France (2009)
Karypis, G., Kumar, V.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Computing 20, 359–392 (1999)
Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comp. Systems 20, 475–487 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kuzmin, A., Luisier, M., Schenk, O. (2013). Fast Methods for Computing Selected Elements of the Green’s Function in Massively Parallel Nanoelectronic Device Simulations. In: Wolf, F., Mohr, B., an Mey, D. (eds) Euro-Par 2013 Parallel Processing. Euro-Par 2013. Lecture Notes in Computer Science, vol 8097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40047-6_54
Download citation
DOI: https://doi.org/10.1007/978-3-642-40047-6_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40046-9
Online ISBN: 978-3-642-40047-6
eBook Packages: Computer ScienceComputer Science (R0)