Anatomy and Physiology of the Vitreo-macular Interface

Part of the Essentials in Ophthalmology book series (ESSENTIALS)


The vitreous occupies four fifths of the volume of the eyeball and consists of collagen fibers and hyaluronic acid. These components maintain a clear matrix with viscoelastic properties resulting in outward mechanical forces responsible for retinal attachment. Anatomically, the vitreous can be divided into vitreous base, core, and cortex. The vitreous cortex envelopes the core, with attachments to all its contiguous structures, such as the vitreous base, the lens, parafovea, margin of optic nerve, and major retinal blood vessels. Anchoring fibrils grow from the inner layer of the vitreous cortex into the internal limiting membrane of the retina forming the vitreoretinal interface. Diffusion of molecules can occur through this interface in a unilateral direction providing a pathway for intravitreal drug delivery.


Optic Nerve Hyaluronic Acid Internal Limit Membrane Posterior Vitreous Detachment Lamina Densa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



  1. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331(22):1480–1487PubMedCrossRefGoogle Scholar
  2. Ayad S, Weiss JB (1984) A new look at vitreous-humour collagen. Biochem J 218(3):835–840PubMedGoogle Scholar
  3. Balazs EA, Toth LZ, Eckl EA, Mitchell AP (1964) Studies on the structure of the vitreous body. XII. Cytological and histochemical studies on the cortical tissue layer. Exp Eye Res 3:57–71PubMedCrossRefGoogle Scholar
  4. Bishop PN, Holmes DF, Kadler KE, McLeod D, Bos KJ (2004) Age-related changes on the surface of vitreous collagen fibrils. Invest Ophthalmol Vis Sci 45(4):1041–1046. doi: 10.1167/iovs.03-1017 PubMedCrossRefGoogle Scholar
  5. Bleeker GM, van Haeringen NJ, Maas ER, Glasius E (1968) Selective properties of the vitreous barrier. Exp Eye Res 7(1):37–46PubMedCrossRefGoogle Scholar
  6. Campochiaro PA, Bryan JA 3rd, Conway BP, Jaccoma EH (1986) Intravitreal chemotactic and mitogenic activity. Implication of blood-retinal barrier breakdown. Arch Ophthalmol 104(11):1685–1687PubMedCrossRefGoogle Scholar
  7. Comper WD, Laurent TC (1978) Physiological function of connective tissue polysaccharides. Physiol Rev 58(1):255–315PubMedGoogle Scholar
  8. Duke-Elder S, Wybar KC (1961) The refractive media – vitreous. In: Duke-Elder SS (ed) System of ophthalmology, vol II. Mosby, St. Louis, pp 294–307Google Scholar
  9. Dunker S, Glinz J, Faulborn J (1997) Morphologic studies of the peripheral vitreoretinal interface in humans reveal structures implicated in the pathogenesis of retinal tears. Retina 17(2):124–130PubMedCrossRefGoogle Scholar
  10. Emerson MV, Lauer AK (2007) Emerging therapies for the treatment of neovascular age-related macular degeneration and diabetic macular edema. BioDrugs 21(4):245–257. doi: 2145 [pii] PubMedCrossRefGoogle Scholar
  11. Foos RY, Wheeler NC (1982) Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology 89(12):1502–1512PubMedCrossRefGoogle Scholar
  12. Foulds WS (1975) The vitreous in retinal detachment. Trans Ophthalmol Soc U K 95(3):412–416PubMedGoogle Scholar
  13. Foulds WS, Allan D, Moseley H, Kyle PM (1985) Effect of intravitreal hyaluronidase on the clearance of tritiated water from the vitreous to the choroid. Br J Ophthalmol 69(7):529–532PubMedCrossRefGoogle Scholar
  14. Frambach DA, Marmor MF (1982) The rate and route of fluid resorption from the subretinal space of the rabbit. Invest Ophthalmol Vis Sci 22(3):292–302PubMedGoogle Scholar
  15. Gartner J (1966) Electron-microscopic observations of the relationships between vitreous body and retina. Bibl Ophthalmol 70:67–75PubMedGoogle Scholar
  16. Gloor BP (1981) The vitreous. In: Adler FH, Moses RA, Hart WM (eds) Adler’s physiology of the eye. 7th edn. Mosby, St. Louis, pp 255–276Google Scholar
  17. Green WR (1985) Retina. In: Spencer WH (ed) Ophthalmic pathology, an atlas and textbook. WB Saunders, Philadelphia, p 589Google Scholar
  18. Green WR, Sebag J (2001) Vitreoretinal interface. In: Ryan SJ (ed) Retina, vol 3, 3rd edn. Mosby, St. Louis, pp 1882–1960Google Scholar
  19. Heegaard S (1994) Structure of the human vitreoretinal border region. Ophthalmologica 208(2):82–91PubMedCrossRefGoogle Scholar
  20. Heegaard S (1997) Morphology of the vitreoretinal border region. Acta Ophthalmol Scand Suppl 222:1–31PubMedGoogle Scholar
  21. Hogan MJ (1963) The vitreous, its structure, and relation to the ciliary body and retina. Invest Ophthalmol Vis Sci 2(5):418–445Google Scholar
  22. Ip MS (2012) Optimizing the use of intravitreal anti-VEGF agents in the treatment of diabetic macular edema. Ocular Surg News 25(2012):3–8Google Scholar
  23. Ip MS, Scott IU, Brown GC, Brown MM, Ho AC, Huang SS, Recchia FM (2008) Anti-vascular endothelial growth factor pharmacotherapy for age-related macular degeneration: a report by the American Academy of Ophthalmology. Ophthalmology 115(10):1837–1846PubMedCrossRefGoogle Scholar
  24. Jaccoma EH, Conway BP, Campochiaro PA (1985) Cryotherapy causes extensive breakdown of the blood-retinal barrier. A comparison with argon laser photocoagulation. Arch Ophthalmol 103(11):1728–1730PubMedCrossRefGoogle Scholar
  25. Larsen JS (1971) The sagittal growth of the eye. 3. Ultrasonic measurement of the posterior segment (axial length of the vitreous) from birth to puberty. Acta Ophthalmol (Cph) 49(3):441–453CrossRefGoogle Scholar
  26. Lee VHL, Hosoya K (2001) Drug delivery to the posterior segment. In: Ryan SJ (ed) Retina, vol 3, 3rd edn. Mosby, St. Louis, pp 2270–2285Google Scholar
  27. Lesar TS, Fiscella RG (1985) Antimicrobial drug delivery to the eye. Drug Intell Clin Pharm 19(9):642–654PubMedGoogle Scholar
  28. Los LI, van Luyn MJA, Nieuwenhuis P (2000) Vascular remnants in the rabbit vitreous body. I. Morphological characteristics and relationship to vitreous embryonic development. Exp Eye Res 71(2):143–151. doi: 10.1006/exer.2000.0864 PubMedCrossRefGoogle Scholar
  29. Marmor MF (2001) Mechanisms of normal retinal adhesion. In: Ryan SJ (ed) Retina, vol 3, 3rd edn. Mosby, St. Louis, pp 1849–1869Google Scholar
  30. Maurice DM (1957) The exchange of sodium between the vitreous body and the blood and aqueous humour. J Physiol 137(1):110–125PubMedGoogle Scholar
  31. Nicoletti VG, Nicoletti R, Ferrara N, Meli G, Reibaldi M, Reibaldi A (2003) Diabetic patients and retinal proliferation: an evaluation of the role of vascular endothelial growth factor (VEGF). Exp Clin Endocrinol Diabetes 111(4):209–214PubMedCrossRefGoogle Scholar
  32. Noda Y, Hata Y, Hisatomi T, Nakamura Y, Hirayama K, Miura M, Nakao S, Fujisawa K, Sakamoto T, Ishibashi T (2004) Functional properties of hyalocytes under PDGF-rich conditions. Invest Ophthalmol Vis Sci 45(7):2107–2114. doi: 10.1167/iovs.03-1092 PubMedCrossRefGoogle Scholar
  33. Ogata N, Nishikawa M, Nishimura T, Mitsuma Y, Matsumura M (2002) Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol 134(3):348–353PubMedCrossRefGoogle Scholar
  34. Ponsioen TL, Hooymans JM, Los LI (2010) Remodelling of the human vitreous and vitreoretinal interface–a dynamic process. Prog Retin Eye Res 29(6):580–595PubMedCrossRefGoogle Scholar
  35. Reddy DV, Kinsey VE (1960) Composition of the vitreous humor in relation to that of plasma and aqueous humors. Arch Ophthalmol 63:715–720PubMedCrossRefGoogle Scholar
  36. Sakamoto T, Ishibashi T (2011) Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina 31(2):222–228PubMedCrossRefGoogle Scholar
  37. Sebag J (1989a) Biochemistry of the vitreous. In The vitreous. Springer, New York, pp 17–34Google Scholar
  38. Sebag J (1989b) Embryology of the vitreous. In: The vitreous. Springer, New York, pp 7–16Google Scholar
  39. Sebag J (1989c) Functions of the vitreous. In: The vitreous. Springer, New York, pp 59–71Google Scholar
  40. Sebag J (1989d) Structure of the vitreous. In: The vitreous. Springer, New York, pp 35–58Google Scholar
  41. Sebag J (1992) Anatomy and pathology of the vitreo-retinal interface. Eye (Lond) 6(Pt 6):541–552Google Scholar
  42. Sebag J, Balazs EA (1989) Morphology and ultrastructure of human vitreous fibers. Invest Ophthalmol Vis Sci 30(8):1867–1871PubMedGoogle Scholar
  43. Swann DA, Sotman SS (1980) The chemical composition of bovine vitreous-humour collagen fibres. Biochem J 185(3):545–554PubMedGoogle Scholar
  44. Swann DA, Caulfield JB, Broadhurst JB (1976) The altered fibrous form of vitreous collagen following solubilization with pepsin. Biochim Biophys Acta 427(1):365–370PubMedCrossRefGoogle Scholar
  45. Tolentino FI (1974) The vitreous. Arch Ophthalmol 92(4):350–358PubMedCrossRefGoogle Scholar
  46. Tolentino M, Schepens CL, Freeman HM (1976) Review of embryology and anatomy. In: Tolentino M, Schepens CL, Freeman HM (eds) Vitreoretinal disorders – diagnosis and management. WB Saunders, Philadelphia, pp 1–24Google Scholar
  47. Weiss H (1972) The carbohydrate reserve in the vitreous body and retina of the rabbit’s eye during and after pressure ischaemia and insulin hypoglycaemia. Ophthalmic Res 3:360–371CrossRefGoogle Scholar
  48. Wolf E (1968) The eyeball. In: Last RJ (ed) Anatomy of the eye and orbit, 6th edn. HK Lewis, London, pp 174–178Google Scholar
  49. Zhou J, Wang S, Xia X (2012) Role of intravitreal inflammatory cytokines and angiogenic factors in proliferative diabetic retinopathy. Curr Eye Res 37(5):416–420PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.University of Wisconsin Fundus Photograph Reading Center, University of Wisconsin-MadisonMadisonUSA

Personalised recommendations