Skip to main content

Pharmacologic Vitreolysis: New Perspectives, Future Directions

  • Chapter
  • First Online:
Diseases of the Vitreo-Macular Interface

Abstract

Ocriplasmin is currently the only approved pharmacologic agent for the release of vitreo-macular traction. Its success rate in releasing vitreo-macular traction under optimal conditions is about 40 %. Traction is present in a number of processes leading to macular disease, which suggests that its prophylactic release might have significant clinical relevance. Release of traction or vitreous adhesion in conditions such as macular edema from diabetes or retinal vein occlusion, vascular proliferation, or retinal degeneration or neovascularization can be considered under appropriate circumstances. To this end, the biology of the particular disease process must be considered. Partial release of the posterior hyaloid in pre-proliferative diabetic retinopathy may be associated with an increase risk of proliferation, while in macular edema, early intervention may be required for success.

A challenge will be the development of a treatment regimen that enhances the rate with which complete PVD is achieved either with a single or multiple injections or by combination with other pharmacologic agents. It will also be important to develop means of improving the visualization of the interface between the retina and vitreous. Specific scanning techniques and algorithms currently being developed for the OCT and new ultrasonographic probes are likely to facilitate such visualization and help in the diagnostic and therapeutic management of patients with diseases at the vitreoretinal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts F, Noppen B, Fonteyn L et al (2012) Mechanism of inactivation of ocriplasmin in porcine vitreous. Biophys Chem 165–166:30–38. doi:10.1016/j.bpc.2012.03.002

    Article  PubMed  Google Scholar 

  • Akiba J, Arzabe CW, Trempe CL (1990) Posterior vitreous detachment and neovascularization in diabetic retinopathy. Ophthalmology 97:889–891

    Article  PubMed  CAS  Google Scholar 

  • Asami T, Wong SC, Mitchell PC et al (2012) A novel quadraport needle with improved intravitreal drug dispersion. Retina 32:1222–1225

    Article  PubMed  Google Scholar 

  • Barak Y, Ihnen MA, Schaal S (2012) Spectral domain optical coherence tomography in the diagnosis and management of vitreoretinal interface pathologies. J Ophthalmol 2012:876472. doi:10.1155/2012/876472

    Google Scholar 

  • Barteselli G, Bartsch DU, El-Emam S et al (2013) Combined depth imaging technique on spectral-domain optical coherence tomography. Am J Ophthalmol 155:727–732. doi:10.1016/j.ajo.2012.10.019

    Google Scholar 

  • Boon C, Crama N, Klevering B et al (2008) Reflux after intravitreal injection of bevacizumab. Ophthalmology 115:1268

    Article  Google Scholar 

  • Chan CK, Wessels IF, Friedrichsen EJ (1995) Treatment of idiopathic macular holes by induced posterior vitreous detachment. Ophthalmology 102:757–767

    Article  PubMed  CAS  Google Scholar 

  • De Croos FC, Toth CA, Folgar FA et al (2012) Characterization of vitreoretinal interface disorders using OCT in the interventional phase 3 trials of ocriplasmin. Invest Ophthalmol Vis Sci 53:6504–6511. doi:10.1167/iovs.12-10370

    Article  Google Scholar 

  • de Smet MD, Gandorfer A, Stalmans P et al (2009) Microplasmin intravitreal administration in patients with vitreomacular traction scheduled for vitrectomy: the MIVI I trial. Ophthalmology 116:1349–1355

    Article  PubMed  Google Scholar 

  • de Smet MD, Gad El Kareem A, Zwinderman AH (2013) The vitreous, the retinal interface in ocular health and disease. Ophthalmologica in press. doi: 10.1159/000353447

    Google Scholar 

  • de Smet MD, Jonckx B, Vanhove M et al (2012) Pharmacokinetics of ocriplasmin in vitreous. Invest Ophthalmol Vis Sci 53:8208–8213. doi:10.1167/iovs.12-10148

    Article  PubMed  Google Scholar 

  • Falkner-Radler CI, Glittenberg C, Hagen S et al (2010) Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery. Ophthalmology 117:798–805. doi:10.1016/j.ophtha.2009.08.034

    Article  PubMed  Google Scholar 

  • Faulborn J, Bowald S (1985) Microproliferations in proliferative diabetic retinopathy and their relationship to the vitreous: corresponding light and electron microscopic studies. Graefes Arch Clin Exp Ophthalmol 223:130–138

    Article  PubMed  CAS  Google Scholar 

  • Folgar FA, Toth CA, DeCroos FC et al (2012) Assessment of retinal morphology with spectral and time domain OCT in the phase III trials of enzymatic vitreolysis. Invest Ophthalmol Vis Sci 53:7395–7401. doi:10.1167/iovs.12-10379

    Article  PubMed  Google Scholar 

  • Gad El Kareem AM, Willikens B, Stassen JM et al (2010) Differential vitreous dye diffusion following microplasmin or plasmin pre-treatment. Curr Eye Res 35:235–241

    Article  CAS  Google Scholar 

  • Gad El Kareem A, Zwinderman AH, Mateo-Montoya A, et al (2013) The vitreous and its retinal interface in ocular health and disease. Ophthalmologica (in press)

    Google Scholar 

  • Gao BB, Chen X, Timothy N et al (2008) Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res 7:2516–2525

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Jee D (2012) Effect of the honan intraocular pressure reducer to prevent vitreous reflux after intravitreal bevacizumab injection. Eur J Ophthalmol 22:615–619

    Article  PubMed  Google Scholar 

  • Hubschman JP, Coffee RE, Bourges JL et al (2010) Experimental model of intravitreal injection techniques. Retina 30:167–173

    Article  PubMed  Google Scholar 

  • Johnson MW (2012) Posterior vitreous detachment. Evolution and role in macular disease. Retina 32:S174–S178

    Article  PubMed  Google Scholar 

  • Johnson MW (2013) How should we release vitreomacular traction: surgically, pharmacologically, or pneumatically? Am J Ophthalmol 155:203–205.e1. doi:10.1016/j.ajo.2012.10.016

    Article  PubMed  Google Scholar 

  • Mojana F, Kozak I, Oster SF et al (2010) Observations by spectral-domain optical coherence tomography combined with simultaneous scanning laser ophthalmoscopy: imaging of the vitreous. Am J Ophthalmol 149:641–650. doi:10.1016/j.ajo.2009.11.016

    Article  PubMed  Google Scholar 

  • NasrAllah FP, Jalkh AE, Van Coppenolle F et al (1988) The role of the vitreous in diabetic macular edema. Ophthalmology 95:1335–1339

    Article  PubMed  CAS  Google Scholar 

  • Ochoa-Contreras E, Delsol-Coronado L, Buitrago ME et al (2000) Induced posterior vitreous detachment by intravitreal sulfur hexafluoride (SF6) injection in patients with nonproliferative diabetic retinopathy. Acta Ophthalmol Scand 78:687–688

    Article  PubMed  CAS  Google Scholar 

  • Ono R, Kakehashi A, Yamagami H et al (2005) Prospective assessment of proliferative diabetic retinopathy with observations of posterior vitreous detachment. Int Ophthalmol 26:15–19

    Article  PubMed  Google Scholar 

  • Rodrigues EB, Meyer CH, Grumann A Jr et al (2007) Tunelled incision to prevent vitreous reflux after intravitreal injection. Am J Ophthalmol 143:1035–1037

    Article  PubMed  Google Scholar 

  • Rodrigues EB, Grumann A Jr, Penha FM et al (2011) Effect of needle type and injection technique on pain level and vitreal reflux in intravitreal injection. J Ocul Pharmacol Ther 27:197–203. doi:10.1089/jop.2010.0082

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues IA, Stangos AN, McHugh DA et al (2013) Intravitreal injection of expansile perfluoropropane (c(3)f(8)) for the treatment of vitreomacular traction. Am J Ophthalmol 155:270–276.e2. doi:10.1016/j.ajo.2012.08.018

    Article  PubMed  CAS  Google Scholar 

  • Schneider EW, Johnson MW (2011) Emerging nonsurgical methods for the treatment of vitreomacular adhesion: a review. Clin Ophthalmol 5:1151–1165. doi:10.2147/OPTH.S14840

    Article  PubMed  Google Scholar 

  • Sebag J (2007) Pharmacologic vitreolysis—premise and promise of the first decade. Retina 29:871–874

    Article  Google Scholar 

  • Sebag J (2008) Vitreoschisis. Graefes Arch Clin Exp Ophthalmol 246:329–332. doi:10.1007/s00417-007-0743-x

    Article  PubMed  CAS  Google Scholar 

  • Sebag J, Ansari R, Suh K (2007) Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol 245:576–580

    Article  PubMed  CAS  Google Scholar 

  • Stalmans P, de Laey C, de Smet M et al (2010) Intravitreal injection of microplasmin for treatment of vitreomacular adhesion: results of a prospective, randomized, sham-controlled phase II trial (the MIVI-IIT trial). Retina 30:1122–1127

    Article  PubMed  Google Scholar 

  • Stalmans P, Benz MS, Gandorfer A et al (2012) Enzymatic vitreolysis with ocriplasmin for vitreomacular traction and macular holes. N Engl J Med 367:606–615. doi:10.1056/NEJMoa1110823

    Article  PubMed  CAS  Google Scholar 

  • Tagawa H, McMeel JW, Furukawa H et al (1986) Role of the vitreous in diabetic retinopathy. 1. Vitreous changes in diabetic retinopathy and in physiologic aging. Ophthalmology 93:596–601

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Trempe CL, Maguire K et al (1981) Vitreoretinal relationship in diabetic retinopathy: a biomicroscopic evaluation. Arch Ophthalmol 99:241–245

    Article  PubMed  CAS  Google Scholar 

  • Tammewar AM, Bartsch DU, Kozak I et al (2009) Imaging vitreomacular interface abnormalities in the coronal plane by simultaneous combined scanning laser and optical coherence tomography. Br J Ophthalmol 93:366–372

    Article  PubMed  CAS  Google Scholar 

  • Thresher RJ, Ehrenberg M, Machemer R (1984) Gas-mediated vitreous compression: an experimental alternative to mechanized vitrectomy. Graefes Arch Clin Exp Ophthalmol 221:192–198

    Article  PubMed  CAS  Google Scholar 

  • Usman Saeed M, Batra R, Qureshi F et al (2011) Reflux of drug during intra-vitreal anti-VEGF therapies. Semin Ophthalmol 26:357–360. doi:10.3109/08820538.2011.588648

    Article  PubMed  Google Scholar 

  • Wang Z-LM, Zhang XM, Xu XM et al (2005) PVD following plasmin but not hyaluronidase: implications for combination pharmacologic vitreolysis therapy. Retina 25:38–43

    Article  PubMed  CAS  Google Scholar 

  • Wang MY, Nguyen D, Hindoyan N et al (2009) Vitreo-papillary adhesion in macular hole and macular pucker. Retina 29:644–650

    Article  PubMed  Google Scholar 

  • Zhi-Liang W, Wo-Dong S, Min L et al (2009) Pharmacologic vitreolysis with plasmin and hyaluronidase in diabetic rats. Retina 29:269–274

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc D. de Smet MDCM, PhD, FRCSC, FRCOphth, FMH .

Editor information

Editors and Affiliations

Additional information

Compliance with Ethical Requirements

Porf de Smet declares to have received research grants from ThromboGenics and received speaker’s honoraria from ThromboGenics, Inc and Alcon, Inc and is a consultant for ThromboGenics on preclinical studies and development. The author is also a patent holder on the ocular application of ocriplasmin.

Dr. Kuppermann was a consultant and clinical investigator for ISTA Pharmaceuticals and a clinical investigator and is currently a consultant for ThromboGenics and Alcon. He has received speaker’s honoraria from ThromboGenics and Alcon. Dr. Kuppermann has no other relevant disclosures in the field of vitreolysis.

No animal or human studies were carried out by the authors for this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Smet, M.D., Kuppermann, B.D. (2014). Pharmacologic Vitreolysis: New Perspectives, Future Directions. In: Girach, A., de Smet, M. (eds) Diseases of the Vitreo-Macular Interface. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40034-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40034-6_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40033-9

  • Online ISBN: 978-3-642-40034-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics