Pharmacologic Vitreolysis: Experimental Evidence

Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Vitreolytic agents are characterized by their ability to induce vitreous liquefaction, separation of the posterior hyaloid, or both. Both enzymatic and nonenzymatic approaches have been tested in experimental models. While several are effective inducers of a posterior vitreous detachment, in vivo testing indicated the presence of a narrow safety profile in most tested compounds, limiting further development. The lack of a standardized methodology to assess for the presence of a PVD in both experimental and clinical settings and the inability to judge the extent of the effect makes direct comparison between compounds difficult.

This chapter reviews preclinical publicly available knowledge on known vitreolytic compounds and further discusses means of optimizing vitreolysis based on the pharmacokinetics and pharmacodynamics of ocriplasmin, the best-studied vitreolytic enzyme to date. Such optimization may require not only appropriate delivery but in certain circumstances combination with additional liquefactive agents.


Macular Hole Diabetic Macular Edema Proliferative Diabetic Retinopathy Retinal Vein Occlusion Internal Limit Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



  1. Aerts F, Noppen B, Fonteyn L et al (2012) Mechanism of inactivation of ocriplasmin in porcine vitreous. Biophys Chem 165–166:30–38PubMedCrossRefGoogle Scholar
  2. Asami T, Terasaki H, Kachi S et al (2004) Ultrastructure of internal limiting membrane removed during plasmin-assisted vitrectomy from eyes with diabetic macular edema. Ophthalmology 111:231–237PubMedCrossRefGoogle Scholar
  3. Benz MS, Packo KH, Gonzalez V et al (2010) A placebo-controlled trial of microplasmin intravitreous injection to facilitate posterior vitreous detachment before vitrectomy. Ophthalmology 117:791–797PubMedCrossRefGoogle Scholar
  4. Bhisitkul RB (2001) Anticipation for enzymatic vitreolysis. Br J Ophthalmol 85:1–3PubMedCrossRefGoogle Scholar
  5. Borillo JL, Regillo CD (2001) Treatment of subretinal hemorrhages with tissue plasminogen activator. Curr Opin Ophthalmol 12:207–211CrossRefGoogle Scholar
  6. Brem RB, Robbins SG, Wilson DJ et al (1994) Immunolocalization of integrins in the human retina. Invest Ophthalmol Vis Sci 35:3466–3474PubMedGoogle Scholar
  7. Burggraf D, Vosko MR, Schubert M et al (2010) Different therapy options protecting microvasculature after experimental cerebral ischaemia and reperfusion. Thromb Haemost 103:891–900PubMedCrossRefGoogle Scholar
  8. Chen W, Huang X, Xw M et al (2008) Enzymatic vitreolysis with recombinant microplasminogen and tissue plasminogen activator. Eye 22:300–307PubMedCrossRefGoogle Scholar
  9. Chen WL, Mo W, Sun K et al (2009) Microplasmin degrades fibronectin and laminin at vitreoretinal interface and outer retina during enzymatic vitrectomy. Curr Eye Res 34:1057–1064PubMedCrossRefGoogle Scholar
  10. de Smet MD, Gandorfer A, Stalmans P et al (2009a) Microplasmin intravitreal administration in patients with vitreomacular traction scheduled for vitrectomy: the MIVI I trial. Ophthalmology 116:1349–1355PubMedCrossRefGoogle Scholar
  11. de Smet MD, Valmaggia C, Zarrantz J et al (2009b) Microplasmin: ex vivo characterization of its activity in porcine vitreous. Invest Ophthalmol Vis Sci 50:814–819PubMedCrossRefGoogle Scholar
  12. de Smet MD, Gad Elkareem AM, Zwinderman AH (2013) The vitreous, the retinal interface in ocular health and disease. Ophthalmologica. [Epub] PMID: 23989078Google Scholar
  13. Foos RY, Wheeler NC (1982) Vitreretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology 89:1502–1512PubMedCrossRefGoogle Scholar
  14. Foulds WS, Allan D, Moseley H et al (1985) Effect of intravitreal hyaluronidase on the clearance of tritiated water from the vitreous of the choroid. Br J Ophthalmol 69:529–532PubMedCrossRefGoogle Scholar
  15. Frenzel E, Neely K, Walsh A et al (1998) A new model of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 39:2157–2164PubMedGoogle Scholar
  16. Gad Elkareem AM, de Smet MD (2012) Effect of microplasmin on the clearance of vitreous hemorrhage from an experimental model in rabbits. Acta Ophthalmol. doi:  10.1111/j.1755-3768.2012.02568.x. PMID 23025384
  17. Gad El Kareem A, Willikens B, Vanhove M et al (2010a) Characterization of a stabilized form of microplasmin for the induction of a posterior vitreous detachment. Curr Eye Res 35:909–915CrossRefGoogle Scholar
  18. Gad El Kareem AM, Willikens B, Stassen JM et al (2010b) Differential vitreous dye diffusion following microplasmin or plasmin pre-treatment. Curr Eye Res 35:235–241CrossRefGoogle Scholar
  19. Gandorfer A, Putz E, Wege-Lüßen U et al (2001) Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy. Br J Ophthalmol 85:6–10PubMedCrossRefGoogle Scholar
  20. Gandorfer A, Priglinger S, Schebitz K et al (2002) Vitreous morphology of plasmin treated human eyes. Am J Ophthalmol 133:156–159PubMedCrossRefGoogle Scholar
  21. Gandorfer A, Rohleder M, Sethi C et al (2004) Posterior vitreous detachment induced by microplasmin. Invest Ophthalmol Vis Sci 45:641–647PubMedCrossRefGoogle Scholar
  22. Gottlieb JL, Antoszyk A, Hatchell DL et al (1990) The safety of intravitreal hyaluronidase. A clinical and histologic study. Invest Ophthalmol Vis Sci 31:2345–2352PubMedGoogle Scholar
  23. Hermel M, Schrage NF (2007) Efficacy of plasmin enzymes and chondroitinase ABC in creating posterior vitreous separation in the pig: a masked, placebo-controlled in vivo study. Graefes Arch Clin Exp Ophthalmol 245:399–406PubMedCrossRefGoogle Scholar
  24. Hermel M, Dailey W, Trese M et al (2011) A disposable system for rapid purification of autologous plasmin as an adjunct to vitrectomy – performance and safety profile. Graefes Arch Clin Exp Ophthalmol 249:37–46PubMedCrossRefGoogle Scholar
  25. Hesse L, Kroll P (1999) Enzymatically induced posterior vitreous detachment in proliferative diabetic retinopathy. Klin Monbl Augenheilkd 214:84–89PubMedCrossRefGoogle Scholar
  26. Hesse L, Kroll P (2000) TPA-assisted vitrectomy for proliferative diabetic retinopathy. Retina 20:317–318PubMedCrossRefGoogle Scholar
  27. Hesse L, Nebeling B, Schroeder B et al (2000) Induction of posterior vitreous detachment in rabbits by intravitreal injection of tissue plasminogen activator following cryopexy. Exp Eye Res 70:31–39PubMedCrossRefGoogle Scholar
  28. Hikichi T, Kado M, Yoshida A (2000) Intravitreal injection of hyaluronidase cannot induce posterior vitreous detachment in the rabbit. Retina 20:195–198PubMedCrossRefGoogle Scholar
  29. Johnson MW (2005) Perifoveal vitreous detachment and its macular complications. Trans Am Ophthalmol Soc 103:537–567PubMedGoogle Scholar
  30. Johnson MW (2010) Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol 149:371–382PubMedCrossRefGoogle Scholar
  31. Johnson EM, Berk DA, Jain RK et al (1996) Hindered diffusion in agarose gels: test of effective medium model. Biophys J 70:1017–1026PubMedCrossRefGoogle Scholar
  32. Jorge R, Oyamaguchi EK, Cardillo JA et al (2003) Intravitreal injection of dispase causes retinal hemorrhages in rabbit and human eyes. Curr Eye Res 26:107–112PubMedCrossRefGoogle Scholar
  33. Kamei M, Estafanous M, Lewis H (2000) Tissue plasminogen activator in the treatment of vitreoretinal diseases. Semin Ophthalmol 15:44–50PubMedCrossRefGoogle Scholar
  34. Kang SW, Hyung SM, Choi MY et al (1995) Induction of vitreolysis and vitreous detachment with hyaluronidase and perfluoropropane gas. Korean J Ophthalmol 9:69–78PubMedGoogle Scholar
  35. Kuppermann BD, Thomas EL, de Smet MD et al (2005a) Safety results of two phase III trials of an intravitreous injection of highly purified ovine Hyaluronidase (Vitrase) for the management of vitreous hemorrhage. Am J Ophthalmol 140:585–587PubMedGoogle Scholar
  36. Kuppermann BD, Thomas EL, de Smet MD et al (2005b) Pooled efficacy results from two multinational randomized controlled clinical trials of a single intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage. Am J Ophthalmol 140:573–584PubMedCrossRefGoogle Scholar
  37. Larsson L, Osterlin S (1985) Posterior vitreous detachment. A combined clinical and physicochemical study. Graefes Arch Clin Exp Ophthalmol 223:92–95PubMedCrossRefGoogle Scholar
  38. Le Goff MM, Bishop PN (2008) Adult vitreous structure and postnatal changes. Eye 22:1214–1222PubMedCrossRefGoogle Scholar
  39. Le Mer Y, Korobelnik JF, Morel C et al (1999) TPA-assisted vitrectomy for proliferative diabetic retinopathy. Results of a double-masked, multicenter trial. Retina 19:378–382PubMedCrossRefGoogle Scholar
  40. Linder B (1966) Acute posterior vitreous detachment and its retinal complications. Acta Ophthalmol Suppl 87:5–107Google Scholar
  41. Liotta LA, Goldfarb RH, Brundage R et al (1981) Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res 41:4629–4636PubMedGoogle Scholar
  42. Margherio AR, Margherio RR, Hartzer M et al (1998) Plasmin enzyme-assisted vitrectomy in traumatic pediatric macular holes. Ophthalmology 105:1617–1620PubMedCrossRefGoogle Scholar
  43. Men G, Peyman GA, Genaidy M et al (2004) The role of recombinant lysine-plasminogen and recombinant urokinase and sulfur hexafluoride combination in inducing posterior vitreous detachment. Retina 24:199–209PubMedCrossRefGoogle Scholar
  44. Monea S, Lehti K, Keski-Oja J et al (2002) Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol 192:160–170PubMedCrossRefGoogle Scholar
  45. Moorhead LC, Radtke N (1985) Enzyme-assisted vitrectomy with bacterial collagenase. Pilot human studies. Retina 5:98–100PubMedCrossRefGoogle Scholar
  46. Moorhead LC, Chu HH, Garcia CA (1983) Enzyme-assisted vitrectomy with bacterial collagenase. Time course and toxicity studies. Arch Ophthalmol 101:265–274PubMedCrossRefGoogle Scholar
  47. Munger JS, Sheppard D (2011) Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol 3:a005017PubMedCrossRefGoogle Scholar
  48. Murakami T, Takagi H, Ohashi H et al (2007) Role of posterior vitreous detachment induced by intravitreal tissue plasminogen activator in macular edema with central retinal vein occlusion. Retina 27:1031–1037PubMedCrossRefGoogle Scholar
  49. O’Neill R, Shea M (1973) The effects of bacterial collagenase in rabbit vitreous. Can J Ophthalmol 8:366–370PubMedGoogle Scholar
  50. Oliveira LB, Meyer CH, Kumar J et al (2002) RGD peptide-assisted vitrectomy to facilitate induction of a posterior vitreous detachment: a new principle in pharmacological vitreolysis. Curr Eye Res 25:333–340PubMedCrossRefGoogle Scholar
  51. Raza SL, Nehring LC, Shapiro SD et al (2000) Proteinase-activated receptor-1 regulation of macrophages (MMP-12) secretion by serine proteinases. J Biol Chem 52:41243–41250CrossRefGoogle Scholar
  52. Rizzo SM, Pellegrini GP, Benocci FM et al (2006) Autologous plasmin for pharmacologic vitreolysis prepared 1 hour before surgery. Retina 26:792–796PubMedCrossRefGoogle Scholar
  53. Sakuma T, Tanaka M, Mizota A et al (2005) Safety of in vivo pharmacologic vitreolysis with recombinant microplasmin in rabbit eyes. Invest Ophthalmol Vis Sci 46:3295–3299PubMedCrossRefGoogle Scholar
  54. Schneider EW, Johnson MW (2011) Emerging nonsurgical methods for the treatment of vitreomacular adhesion: a review. Clin Ophthalmol 5:1151–1165PubMedCrossRefGoogle Scholar
  55. Sebag J (1997) Classifying posterior vitreous detachment: a new way to look at the invisible. Br J Ophthalmol 81:521PubMedCrossRefGoogle Scholar
  56. Sebag J (1998) Pharmacologic vitreolysis. Retina 18:1–3PubMedCrossRefGoogle Scholar
  57. Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol 242:690–698PubMedCrossRefGoogle Scholar
  58. Sebag J (2005) Molecular biology of pharmacologic vitreolysis. Trans Am Ophthalmol Soc 103:473–494PubMedGoogle Scholar
  59. Sebag J, Ansari R, Suh K (2007) Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol 245:576–580PubMedCrossRefGoogle Scholar
  60. Stalmans P, de Laey C, de Smet M et al (2010) Intravitreal injection of microplasmin for treatment of vitreomacular adhesion: results of a prospective, randomized, sham-controlled phase II trial (the MIVI-IIT trial). Retina 30:1122–1127PubMedCrossRefGoogle Scholar
  61. Staubach F, Nober V, Janknecht P (2004) Enzyme-assisted vitrectomy in enucleated pig eyes: a comparison of hyaluronidase, chondroitinase, and plasmin. Curr Eye Res 29:261–268PubMedCrossRefGoogle Scholar
  62. Stenn KS, Link R, Moellmann G et al (1989) Dispase, a neutral protease from Bacillus polymyxa, is a powerful fibronectinase and type IV collagenase. J Invest Dermatol 93:287–290PubMedCrossRefGoogle Scholar
  63. Takano A, Hirata A, Inomata Y et al (2005) Intravitreal plasmin injection activates endogenous matrix metalloproteinase-2 in rabbit and human vitreous. Am J Ophthalmol 140:654–660PubMedCrossRefGoogle Scholar
  64. Takano A, Hirata A, Ogasawara K et al (2006) Posterior vitreous detachment induced by nattokinase (subtilisin NAT): a novel enzyme for pharmacologic vitreolysis. Invest Ophthalmol Vis Sci 47:2075–2079PubMedCrossRefGoogle Scholar
  65. Tameesh MK, Lakhanpal RR, Fujii GY et al (2004) Retinal vein cannulation with prolonged infusion of tissue plasminogen activator (tPA) for the treatment of experimental retinal vein occlusion in dogs. Arch Ophthalmol 138:829–839Google Scholar
  66. Tezel TH, Del Priore LV, Kaplan HJ (1998) Posterior vitreous detachment with dispase. Retina 18:7–15PubMedCrossRefGoogle Scholar
  67. Trese MT, Williams GA, Hartzer MK (2000) A new approach to stage 3 macular holes. Ophthalmology 107:1607–1611PubMedCrossRefGoogle Scholar
  68. Uemura A, Nakamura M, Kachi S et al (2005) Effect of plasmin on laminin and fibronectin during plasmin-assisted vitrectomy. Arch Ophthalmol 123:209–213PubMedCrossRefGoogle Scholar
  69. Uesugi Y, Usuki H, Iwabuchi M et al (2011) Highly potent fibrinolytic serine protease from streptomyces. Enzyme Microb Technol 48:7–12PubMedCrossRefGoogle Scholar
  70. Unal M, Peyman GA (2000) The efficacy of plasminogen-urokinase combination in inducing posterior vitreous detachment. Retina 20:69–75PubMedCrossRefGoogle Scholar
  71. Urano T, Ihara H, Umemura K et al (2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis Cleaves and inactivates plasminogen activator inhibitor type 1. J Biol Chem 276:24690–24696PubMedCrossRefGoogle Scholar
  72. Valmaggia C, Willekens B, de Smet MD (2003) Microplasmin induced vitreolysis in porcine eyes. Invest Ophthalmol Vis Sci 44:E Abstract 3050Google Scholar
  73. Verstraeten TC, Chapman C, Hartzer M et al (1993) Pharmacologic induction of posterior vitreous detachment in the rabbit. Arch Ophthalmol 111:849–854PubMedCrossRefGoogle Scholar
  74. Wang F, Wang Z, Sun X et al (2004) Safety and efficacy of dispase and plasmin in pharmacologic vitreolysis. Invest Ophthalmol Vis Sci 45:3286–3290PubMedCrossRefGoogle Scholar
  75. Wang Z-LM, Zhang XM, Xu XM et al (2005) PVD following plasmin but not hyaluronidase: implications for combination pharmacologic vitreolysis therapy. Retina 25:38–43PubMedCrossRefGoogle Scholar
  76. Yang CH, Huang TF, Liu KR et al (1996) Inhibition of retinal pigment epithelial cell-induced tractional retinal detachment by disintegrins, a group of Arg-Gly-Asp-containing peptides from viper venom. Invest Ophthalmol Vis Sci 37:843–854PubMedGoogle Scholar
  77. Zhi-Liang W, Wo-Dong S, Min L et al (2009) Pharmacologic vitreolysis with plasmin and hyaluronidase in diabetic rats. Retina 29:269–274PubMedCrossRefGoogle Scholar
  78. Zhu D, Chen H, Xu X (2006) Effects of intravitreal dispase on vitreoretinal interface in rabbits. Curr Eye Res 31:935–946PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Retina and Ocular InflammationMIOS, Specialized Eye Center in Uveitis and RetinaLausanneSwitzerland
  2. 2.Vitreoretinal Surgery UnitClinique de MontchoisiLausanneSwitzerland
  3. 3.Retina and InflammationMIOSLausanneSwitzerland

Personalised recommendations