Skip to main content

Pharmacologic Vitreolysis: Experimental Evidence

  • Chapter
  • First Online:
Diseases of the Vitreo-Macular Interface

Abstract

Vitreolytic agents are characterized by their ability to induce vitreous liquefaction, separation of the posterior hyaloid, or both. Both enzymatic and nonenzymatic approaches have been tested in experimental models. While several are effective inducers of a posterior vitreous detachment, in vivo testing indicated the presence of a narrow safety profile in most tested compounds, limiting further development. The lack of a standardized methodology to assess for the presence of a PVD in both experimental and clinical settings and the inability to judge the extent of the effect makes direct comparison between compounds difficult.

This chapter reviews preclinical publicly available knowledge on known vitreolytic compounds and further discusses means of optimizing vitreolysis based on the pharmacokinetics and pharmacodynamics of ocriplasmin, the best-studied vitreolytic enzyme to date. Such optimization may require not only appropriate delivery but in certain circumstances combination with additional liquefactive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts F, Noppen B, Fonteyn L et al (2012) Mechanism of inactivation of ocriplasmin in porcine vitreous. Biophys Chem 165–166:30–38

    Article  PubMed  Google Scholar 

  • Asami T, Terasaki H, Kachi S et al (2004) Ultrastructure of internal limiting membrane removed during plasmin-assisted vitrectomy from eyes with diabetic macular edema. Ophthalmology 111:231–237

    Article  PubMed  Google Scholar 

  • Benz MS, Packo KH, Gonzalez V et al (2010) A placebo-controlled trial of microplasmin intravitreous injection to facilitate posterior vitreous detachment before vitrectomy. Ophthalmology 117:791–797

    Article  PubMed  Google Scholar 

  • Bhisitkul RB (2001) Anticipation for enzymatic vitreolysis. Br J Ophthalmol 85:1–3

    Article  PubMed  CAS  Google Scholar 

  • Borillo JL, Regillo CD (2001) Treatment of subretinal hemorrhages with tissue plasminogen activator. Curr Opin Ophthalmol 12:207–211

    Article  Google Scholar 

  • Brem RB, Robbins SG, Wilson DJ et al (1994) Immunolocalization of integrins in the human retina. Invest Ophthalmol Vis Sci 35:3466–3474

    PubMed  CAS  Google Scholar 

  • Burggraf D, Vosko MR, Schubert M et al (2010) Different therapy options protecting microvasculature after experimental cerebral ischaemia and reperfusion. Thromb Haemost 103:891–900

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Huang X, Xw M et al (2008) Enzymatic vitreolysis with recombinant microplasminogen and tissue plasminogen activator. Eye 22:300–307

    Article  PubMed  CAS  Google Scholar 

  • Chen WL, Mo W, Sun K et al (2009) Microplasmin degrades fibronectin and laminin at vitreoretinal interface and outer retina during enzymatic vitrectomy. Curr Eye Res 34:1057–1064

    Article  PubMed  CAS  Google Scholar 

  • de Smet MD, Gandorfer A, Stalmans P et al (2009a) Microplasmin intravitreal administration in patients with vitreomacular traction scheduled for vitrectomy: the MIVI I trial. Ophthalmology 116:1349–1355

    Article  PubMed  Google Scholar 

  • de Smet MD, Valmaggia C, Zarrantz J et al (2009b) Microplasmin: ex vivo characterization of its activity in porcine vitreous. Invest Ophthalmol Vis Sci 50:814–819

    Article  PubMed  Google Scholar 

  • de Smet MD, Gad Elkareem AM, Zwinderman AH (2013) The vitreous, the retinal interface in ocular health and disease. Ophthalmologica. [Epub] PMID: 23989078

    Google Scholar 

  • Foos RY, Wheeler NC (1982) Vitreretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology 89:1502–1512

    Article  PubMed  CAS  Google Scholar 

  • Foulds WS, Allan D, Moseley H et al (1985) Effect of intravitreal hyaluronidase on the clearance of tritiated water from the vitreous of the choroid. Br J Ophthalmol 69:529–532

    Article  PubMed  CAS  Google Scholar 

  • Frenzel E, Neely K, Walsh A et al (1998) A new model of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 39:2157–2164

    PubMed  CAS  Google Scholar 

  • Gad Elkareem AM, de Smet MD (2012) Effect of microplasmin on the clearance of vitreous hemorrhage from an experimental model in rabbits. Acta Ophthalmol. doi: 10.1111/j.1755-3768.2012.02568.x. PMID 23025384

  • Gad El Kareem A, Willikens B, Vanhove M et al (2010a) Characterization of a stabilized form of microplasmin for the induction of a posterior vitreous detachment. Curr Eye Res 35:909–915

    Article  CAS  Google Scholar 

  • Gad El Kareem AM, Willikens B, Stassen JM et al (2010b) Differential vitreous dye diffusion following microplasmin or plasmin pre-treatment. Curr Eye Res 35:235–241

    Article  CAS  Google Scholar 

  • Gandorfer A, Putz E, Wege-Lüßen U et al (2001) Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy. Br J Ophthalmol 85:6–10

    Article  PubMed  CAS  Google Scholar 

  • Gandorfer A, Priglinger S, Schebitz K et al (2002) Vitreous morphology of plasmin treated human eyes. Am J Ophthalmol 133:156–159

    Article  PubMed  Google Scholar 

  • Gandorfer A, Rohleder M, Sethi C et al (2004) Posterior vitreous detachment induced by microplasmin. Invest Ophthalmol Vis Sci 45:641–647

    Article  PubMed  Google Scholar 

  • Gottlieb JL, Antoszyk A, Hatchell DL et al (1990) The safety of intravitreal hyaluronidase. A clinical and histologic study. Invest Ophthalmol Vis Sci 31:2345–2352

    PubMed  CAS  Google Scholar 

  • Hermel M, Schrage NF (2007) Efficacy of plasmin enzymes and chondroitinase ABC in creating posterior vitreous separation in the pig: a masked, placebo-controlled in vivo study. Graefes Arch Clin Exp Ophthalmol 245:399–406

    Article  PubMed  CAS  Google Scholar 

  • Hermel M, Dailey W, Trese M et al (2011) A disposable system for rapid purification of autologous plasmin as an adjunct to vitrectomy – performance and safety profile. Graefes Arch Clin Exp Ophthalmol 249:37–46

    Article  PubMed  CAS  Google Scholar 

  • Hesse L, Kroll P (1999) Enzymatically induced posterior vitreous detachment in proliferative diabetic retinopathy. Klin Monbl Augenheilkd 214:84–89

    Article  PubMed  CAS  Google Scholar 

  • Hesse L, Kroll P (2000) TPA-assisted vitrectomy for proliferative diabetic retinopathy. Retina 20:317–318

    Article  PubMed  CAS  Google Scholar 

  • Hesse L, Nebeling B, Schroeder B et al (2000) Induction of posterior vitreous detachment in rabbits by intravitreal injection of tissue plasminogen activator following cryopexy. Exp Eye Res 70:31–39

    Article  PubMed  CAS  Google Scholar 

  • Hikichi T, Kado M, Yoshida A (2000) Intravitreal injection of hyaluronidase cannot induce posterior vitreous detachment in the rabbit. Retina 20:195–198

    Article  PubMed  CAS  Google Scholar 

  • Johnson MW (2005) Perifoveal vitreous detachment and its macular complications. Trans Am Ophthalmol Soc 103:537–567

    PubMed  Google Scholar 

  • Johnson MW (2010) Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol 149:371–382

    Article  PubMed  Google Scholar 

  • Johnson EM, Berk DA, Jain RK et al (1996) Hindered diffusion in agarose gels: test of effective medium model. Biophys J 70:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Jorge R, Oyamaguchi EK, Cardillo JA et al (2003) Intravitreal injection of dispase causes retinal hemorrhages in rabbit and human eyes. Curr Eye Res 26:107–112

    Article  PubMed  Google Scholar 

  • Kamei M, Estafanous M, Lewis H (2000) Tissue plasminogen activator in the treatment of vitreoretinal diseases. Semin Ophthalmol 15:44–50

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Hyung SM, Choi MY et al (1995) Induction of vitreolysis and vitreous detachment with hyaluronidase and perfluoropropane gas. Korean J Ophthalmol 9:69–78

    PubMed  CAS  Google Scholar 

  • Kuppermann BD, Thomas EL, de Smet MD et al (2005a) Safety results of two phase III trials of an intravitreous injection of highly purified ovine Hyaluronidase (Vitrase) for the management of vitreous hemorrhage. Am J Ophthalmol 140:585–587

    PubMed  CAS  Google Scholar 

  • Kuppermann BD, Thomas EL, de Smet MD et al (2005b) Pooled efficacy results from two multinational randomized controlled clinical trials of a single intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage. Am J Ophthalmol 140:573–584

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Osterlin S (1985) Posterior vitreous detachment. A combined clinical and physicochemical study. Graefes Arch Clin Exp Ophthalmol 223:92–95

    Article  PubMed  CAS  Google Scholar 

  • Le Goff MM, Bishop PN (2008) Adult vitreous structure and postnatal changes. Eye 22:1214–1222

    Article  PubMed  Google Scholar 

  • Le Mer Y, Korobelnik JF, Morel C et al (1999) TPA-assisted vitrectomy for proliferative diabetic retinopathy. Results of a double-masked, multicenter trial. Retina 19:378–382

    Article  PubMed  Google Scholar 

  • Linder B (1966) Acute posterior vitreous detachment and its retinal complications. Acta Ophthalmol Suppl 87:5–107

    Google Scholar 

  • Liotta LA, Goldfarb RH, Brundage R et al (1981) Effect of plasminogen activator (urokinase), plasmin, and thrombin on glycoprotein and collagenous components of basement membrane. Cancer Res 41:4629–4636

    PubMed  CAS  Google Scholar 

  • Margherio AR, Margherio RR, Hartzer M et al (1998) Plasmin enzyme-assisted vitrectomy in traumatic pediatric macular holes. Ophthalmology 105:1617–1620

    Article  PubMed  CAS  Google Scholar 

  • Men G, Peyman GA, Genaidy M et al (2004) The role of recombinant lysine-plasminogen and recombinant urokinase and sulfur hexafluoride combination in inducing posterior vitreous detachment. Retina 24:199–209

    Article  PubMed  Google Scholar 

  • Monea S, Lehti K, Keski-Oja J et al (2002) Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol 192:160–170

    Article  PubMed  CAS  Google Scholar 

  • Moorhead LC, Radtke N (1985) Enzyme-assisted vitrectomy with bacterial collagenase. Pilot human studies. Retina 5:98–100

    Article  PubMed  CAS  Google Scholar 

  • Moorhead LC, Chu HH, Garcia CA (1983) Enzyme-assisted vitrectomy with bacterial collagenase. Time course and toxicity studies. Arch Ophthalmol 101:265–274

    Article  PubMed  CAS  Google Scholar 

  • Munger JS, Sheppard D (2011) Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol 3:a005017

    Article  PubMed  Google Scholar 

  • Murakami T, Takagi H, Ohashi H et al (2007) Role of posterior vitreous detachment induced by intravitreal tissue plasminogen activator in macular edema with central retinal vein occlusion. Retina 27:1031–1037

    Article  PubMed  Google Scholar 

  • O’Neill R, Shea M (1973) The effects of bacterial collagenase in rabbit vitreous. Can J Ophthalmol 8:366–370

    PubMed  Google Scholar 

  • Oliveira LB, Meyer CH, Kumar J et al (2002) RGD peptide-assisted vitrectomy to facilitate induction of a posterior vitreous detachment: a new principle in pharmacological vitreolysis. Curr Eye Res 25:333–340

    Article  PubMed  Google Scholar 

  • Raza SL, Nehring LC, Shapiro SD et al (2000) Proteinase-activated receptor-1 regulation of macrophages (MMP-12) secretion by serine proteinases. J Biol Chem 52:41243–41250

    Article  Google Scholar 

  • Rizzo SM, Pellegrini GP, Benocci FM et al (2006) Autologous plasmin for pharmacologic vitreolysis prepared 1 hour before surgery. Retina 26:792–796

    Article  PubMed  Google Scholar 

  • Sakuma T, Tanaka M, Mizota A et al (2005) Safety of in vivo pharmacologic vitreolysis with recombinant microplasmin in rabbit eyes. Invest Ophthalmol Vis Sci 46:3295–3299

    Article  PubMed  Google Scholar 

  • Schneider EW, Johnson MW (2011) Emerging nonsurgical methods for the treatment of vitreomacular adhesion: a review. Clin Ophthalmol 5:1151–1165

    Article  PubMed  Google Scholar 

  • Sebag J (1997) Classifying posterior vitreous detachment: a new way to look at the invisible. Br J Ophthalmol 81:521

    Article  PubMed  CAS  Google Scholar 

  • Sebag J (1998) Pharmacologic vitreolysis. Retina 18:1–3

    Article  PubMed  CAS  Google Scholar 

  • Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol 242:690–698

    Article  PubMed  CAS  Google Scholar 

  • Sebag J (2005) Molecular biology of pharmacologic vitreolysis. Trans Am Ophthalmol Soc 103:473–494

    PubMed  CAS  Google Scholar 

  • Sebag J, Ansari R, Suh K (2007) Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol 245:576–580

    Article  PubMed  CAS  Google Scholar 

  • Stalmans P, de Laey C, de Smet M et al (2010) Intravitreal injection of microplasmin for treatment of vitreomacular adhesion: results of a prospective, randomized, sham-controlled phase II trial (the MIVI-IIT trial). Retina 30:1122–1127

    Article  PubMed  Google Scholar 

  • Staubach F, Nober V, Janknecht P (2004) Enzyme-assisted vitrectomy in enucleated pig eyes: a comparison of hyaluronidase, chondroitinase, and plasmin. Curr Eye Res 29:261–268

    Article  PubMed  CAS  Google Scholar 

  • Stenn KS, Link R, Moellmann G et al (1989) Dispase, a neutral protease from Bacillus polymyxa, is a powerful fibronectinase and type IV collagenase. J Invest Dermatol 93:287–290

    Article  PubMed  CAS  Google Scholar 

  • Takano A, Hirata A, Inomata Y et al (2005) Intravitreal plasmin injection activates endogenous matrix metalloproteinase-2 in rabbit and human vitreous. Am J Ophthalmol 140:654–660

    Article  PubMed  CAS  Google Scholar 

  • Takano A, Hirata A, Ogasawara K et al (2006) Posterior vitreous detachment induced by nattokinase (subtilisin NAT): a novel enzyme for pharmacologic vitreolysis. Invest Ophthalmol Vis Sci 47:2075–2079

    Article  PubMed  Google Scholar 

  • Tameesh MK, Lakhanpal RR, Fujii GY et al (2004) Retinal vein cannulation with prolonged infusion of tissue plasminogen activator (tPA) for the treatment of experimental retinal vein occlusion in dogs. Arch Ophthalmol 138:829–839

    CAS  Google Scholar 

  • Tezel TH, Del Priore LV, Kaplan HJ (1998) Posterior vitreous detachment with dispase. Retina 18:7–15

    Article  PubMed  CAS  Google Scholar 

  • Trese MT, Williams GA, Hartzer MK (2000) A new approach to stage 3 macular holes. Ophthalmology 107:1607–1611

    Article  PubMed  CAS  Google Scholar 

  • Uemura A, Nakamura M, Kachi S et al (2005) Effect of plasmin on laminin and fibronectin during plasmin-assisted vitrectomy. Arch Ophthalmol 123:209–213

    Article  PubMed  CAS  Google Scholar 

  • Uesugi Y, Usuki H, Iwabuchi M et al (2011) Highly potent fibrinolytic serine protease from streptomyces. Enzyme Microb Technol 48:7–12

    Article  PubMed  CAS  Google Scholar 

  • Unal M, Peyman GA (2000) The efficacy of plasminogen-urokinase combination in inducing posterior vitreous detachment. Retina 20:69–75

    Article  PubMed  CAS  Google Scholar 

  • Urano T, Ihara H, Umemura K et al (2001) The profibrinolytic enzyme subtilisin NAT purified from Bacillus subtilis Cleaves and inactivates plasminogen activator inhibitor type 1. J Biol Chem 276:24690–24696

    Article  PubMed  CAS  Google Scholar 

  • Valmaggia C, Willekens B, de Smet MD (2003) Microplasmin induced vitreolysis in porcine eyes. Invest Ophthalmol Vis Sci 44:E Abstract 3050

    Google Scholar 

  • Verstraeten TC, Chapman C, Hartzer M et al (1993) Pharmacologic induction of posterior vitreous detachment in the rabbit. Arch Ophthalmol 111:849–854

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Wang Z, Sun X et al (2004) Safety and efficacy of dispase and plasmin in pharmacologic vitreolysis. Invest Ophthalmol Vis Sci 45:3286–3290

    Article  PubMed  Google Scholar 

  • Wang Z-LM, Zhang XM, Xu XM et al (2005) PVD following plasmin but not hyaluronidase: implications for combination pharmacologic vitreolysis therapy. Retina 25:38–43

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Huang TF, Liu KR et al (1996) Inhibition of retinal pigment epithelial cell-induced tractional retinal detachment by disintegrins, a group of Arg-Gly-Asp-containing peptides from viper venom. Invest Ophthalmol Vis Sci 37:843–854

    PubMed  CAS  Google Scholar 

  • Zhi-Liang W, Wo-Dong S, Min L et al (2009) Pharmacologic vitreolysis with plasmin and hyaluronidase in diabetic rats. Retina 29:269–274

    Article  PubMed  Google Scholar 

  • Zhu D, Chen H, Xu X (2006) Effects of intravitreal dispase on vitreoretinal interface in rabbits. Curr Eye Res 31:935–946

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc D. de Smet MDCM, PhD, FRCSC, FRCOphth, FMH .

Editor information

Editors and Affiliations

Additional information

Compliance with Ethical Requirements

Prof de Smet declares to have received research grants from ThromboGenics, Inc.; received speaker’s honoraria from ThromboGenics, Inc. and Alcon, Inc.; and is a consultant for ThromboGenics on preclinical studies and development. The author is also a patent holder on the ocular application of ocriplasmin.

Dr Aranzazu Mateo-Montoya declares that she has no conflict of interest.

No animal or human studies were carried out by the authors for this chapter.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Smet, M.D., Mateo-Montoya, A. (2014). Pharmacologic Vitreolysis: Experimental Evidence. In: Girach, A., de Smet, M. (eds) Diseases of the Vitreo-Macular Interface. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40034-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40034-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40033-9

  • Online ISBN: 978-3-642-40034-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics