Skip to main content

Information-Geometric Optimization: The Interest of Information Theory for Discrete and Continuous Optimization

  • Conference paper
Geometric Science of Information (GSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8085))

Included in the following conference series:

  • 4951 Accesses

Abstract

Black box optimization is the problem of searching for the minimum of a function on a given space (discrete or continuous), without any prior knowledge about the function. Information geometry provides a systematic method, IGO (information-geometric optimization) to easily build optimization algorithms having nice properties; in particular it minimizes the influence of arbitrary choices such as how the space of solutions is represented. In some situations IGO recovers known and widely used algorithms, thus providing theoretical justification for them. Specific properties of information geometry and the Kullback–Leibler divergence guarantee, at each step, minimal diversity loss in the exploration of possible solutions; this suggests IGO algorithms automatically tune the simultaneous exploration of different regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, L., Auger, A., Hansen, N., Ollivier, Y.: Information-geometric optimization: A unifying picture via invariance principles, preprint, arXiv:1106.3708

    Google Scholar 

  2. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Joulin, A., Ollivier, Y.: Curvature, concentration, and error estimates for Markov chain Monte Carlo. Ann. Probab. 38(6), 2418–2442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ollivier, Y.: A January 2005 Invitation to Random Groups, Ensaios Matemáticos 10, Sociedade Brasileira de Matemática, Rio de Janeiro (2005)

    Google Scholar 

  5. Ollivier, Y.: Sharp phase transition theorems for hyperbolicity of random groups. GAFA, Geom. Funct. Anal. 14(3), 595–679 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chevalier, C., Debbasch, F., Ollivier, Y.: Multiscale cosmological dynamics. Physica A 388, 5029–5035 (2009)

    Article  MathSciNet  Google Scholar 

  7. Ollivier, Y., Senellart, P.: Finding related pages using Green measures: An illustration with Wikipedia. In: Proc. of the Twenty-Second Conference on Artificial Intelligence (AAAI 2007), pp. 1427–1433 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ollivier, Y. (2013). Information-Geometric Optimization: The Interest of Information Theory for Discrete and Continuous Optimization. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40020-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40019-3

  • Online ISBN: 978-3-642-40020-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics