Abstract
Black box optimization is the problem of searching for the minimum of a function on a given space (discrete or continuous), without any prior knowledge about the function. Information geometry provides a systematic method, IGO (information-geometric optimization) to easily build optimization algorithms having nice properties; in particular it minimizes the influence of arbitrary choices such as how the space of solutions is represented. In some situations IGO recovers known and widely used algorithms, thus providing theoretical justification for them. Specific properties of information geometry and the Kullback–Leibler divergence guarantee, at each step, minimal diversity loss in the exploration of possible solutions; this suggests IGO algorithms automatically tune the simultaneous exploration of different regions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnold, L., Auger, A., Hansen, N., Ollivier, Y.: Information-geometric optimization: A unifying picture via invariance principles, preprint, arXiv:1106.3708
Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)
Joulin, A., Ollivier, Y.: Curvature, concentration, and error estimates for Markov chain Monte Carlo. Ann. Probab. 38(6), 2418–2442 (2010)
Ollivier, Y.: A January 2005 Invitation to Random Groups, Ensaios Matemáticos 10, Sociedade Brasileira de Matemática, Rio de Janeiro (2005)
Ollivier, Y.: Sharp phase transition theorems for hyperbolicity of random groups. GAFA, Geom. Funct. Anal. 14(3), 595–679 (2004)
Chevalier, C., Debbasch, F., Ollivier, Y.: Multiscale cosmological dynamics. Physica A 388, 5029–5035 (2009)
Ollivier, Y., Senellart, P.: Finding related pages using Green measures: An illustration with Wikipedia. In: Proc. of the Twenty-Second Conference on Artificial Intelligence (AAAI 2007), pp. 1427–1433 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ollivier, Y. (2013). Information-Geometric Optimization: The Interest of Information Theory for Discrete and Continuous Optimization. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2013. Lecture Notes in Computer Science, vol 8085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40020-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-40020-9_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40019-3
Online ISBN: 978-3-642-40020-9
eBook Packages: Computer ScienceComputer Science (R0)