Skip to main content

Sleeping Techniques for Reducing Energy Dissipation

  • Chapter
  • First Online:
Book cover The Art of Wireless Sensor Networks

Abstract

Sensors have limited resources such as energy, computational power and bandwidth, and thus they require protocols and techniques that are resource aware and energy efficient. As energy waste through idle listening, retransmissions and overhearing are some of the primary causes of reduced lifetime in wireless sensor networks, sensor sleeping is critically important. Sleeping techniques prolong the network lifetime by placing components of the sensor node into a sleep mode while aiming to minimize the impact on application performance. Sensor sleeping can be applied to different layers of the protocol stack, and a cross-layer sleep manager can orchestrate sleeping in multiple layers simultaneously. In this chapter, the importance of sensor sleeping, the various sleeping techniques proposed and the applications using these approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There can be scenarios where there are sensors (actuators, relay nodes) with different communication and energy capacities, namely heterogeneous wireless sensor networks. In this chapter we will concentrate on homogeneous topology control, where all the sensors have the same capabilities. For details on topology control in heterogeneous wireless sensor networks, readers can refer to [74].

References

  1. D. Dudek, C. Haas, A. Kuntz, M. Zitterbart, D. Kruger, P. Rothenpieler, D. Pfisterer, S. Fischer, A wireless sensor network for border surveillance, in Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys ’09). (ACM, New York, 2009), pp. 303–304

    Google Scholar 

  2. P. Corke, T. Wark, R. Jurdak, D. Moore, P. Valencia, Environmental wireless sensor networks. Proc. IEEE 98(11), 19031917 (2010)

    Google Scholar 

  3. N. Xu, S. Rangwala, K.K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, D. Estrin, A wireless sensor network for structural monitoring, in Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys ’04). (ACM, New York, 2004), pp. 13–24

    Google Scholar 

  4. U. Ramachandran, R. Kumar, M. Wolenetz, B. Cooper, B. Agarwalla, J. Shin, P. Hutto, A. Paul, Dynamic data fusion for future sensor networks. ACM Trans. Sen. Netw. 2(3), 404–443 (2006)

    Article  Google Scholar 

  5. R. Rajagopalan, P.K. Varshney, Data aggregation techniques in sensor networks: A survey. IEEE Commun. Surveys Tutorials, 8(4) (4th Quarter) (2006)

    Google Scholar 

  6. M. Holland, T. Wang, B. Tavli, A. Seyedi, W. Heinzelman, Optimizing physical-layer parameters for wireless sensor networks. ACM Trans. Sen. Netw. 7, 4, (Article 28 Feb. 2011), doi: 10.1145/1921621.1921622

    Google Scholar 

  7. Texas Instruments (2011) Mixed Signal Microcontroller. Revised Aug 2011: http://www.ti.com/lit/ds/symlink/msp430f2001.pdf

  8. H. Ba, J. Parvin, L. Soto, I. Demirkol, W. Heinzelman, Passive RFID-based wake-up radios for wireless sensor network, in appears, in Wirelessly Powered Sensor Networks and Computational RFID (Springer, Berlin, 2011)

    Google Scholar 

  9. Y. Zhang, C.-H. Feng, I. Demirkol, W. Heinzelman, Energy-efficient duty cycle assignment for receiver-based convergecast in wireless sensor networks, in IEEE GLOBECOM. pp. 1–5 (2010)

    Google Scholar 

  10. M. Kuorilehto, M. Kohvakka, J. Suhonen, P. Hamalainen, M. Hannikainen, T.D. Hamalainen (2007) MAC protocols, in Ultra-Low Energy Wireless Sensor Networks in Practice. pp. 73–88. (Wiley, West Sussex, England, 2007)

    Google Scholar 

  11. M. Kohvakka, M. Kuorilehto, M. Hannikainen, T.D. Hamalainen, Performance analysis of IEEE 802.15.4 and zigbee for large-scale wireless sensor network applications, in Proceedings of ACM International Workshop on Performance Evaluation of Wireless Ad hoc, Sensor, and Ubiquitous Networks. Malaga, Spain. pp. 1–6 (2006)

    Google Scholar 

  12. M.R. Ahmad, E. Dutkiewicz, X. Huang A survey of low duty cycle MAC protocols in wireless sensor networks, in Emerging Communications for Wireless Sensor Networks, ed. by A. Foerster, A. Foerster, (2011) ISBN: 978-953-307-082-7

    Google Scholar 

  13. R. Zheng, J.C. Hou, L. Sha, Asynchronous wakeup for ad hoc networks, in Proceedings of the ACM symposium on Mobile ad hoc networking and, computing (MobiHoc), pp. 35–45 (2003)

    Google Scholar 

  14. W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for wireless sensor networks, in Proceedings of the 21st International Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), New York (2002)

    Google Scholar 

  15. Y. Sun, O. Gurewitz, D.B. Johnson, RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks, in The 6th ACM Conference on Embedded Networked Sensor Systems, pp. 1–14 (2008)

    Google Scholar 

  16. S. Ray, I. Demirkol, W. Heinzelman, ADV-MAC: Analysis and optimization of energy efficiency through advertisements for wireless sensor networks. Elsevier Ad Hoc Netw. J. 9(5), 876–892 (2011)

    Article  Google Scholar 

  17. Y. Xue, N.H. Vaidya, A wakeup scheme for sensor networks: Achieving balance between energy saving and end-to-end delay, in Proc. IEEE RTAS, pp. 19–26 (2004)

    Google Scholar 

  18. L. Gu, J.A. Stankovic, Radio-triggered wake-up capability for sensor networks, in Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium RTAS ’04. pp. 27–36 (2011) doi: 10.1109/RTTAS.2004.1317246

    Google Scholar 

  19. I. Demirkol, C. Ersoy, E. Onur, Wake-up receivers for wireless sensor networks: benefits and challenges. IEEE Wireless Commun. 16(4), 88–96 (2009). doi. 10.1109/MWC.2009.5281260

    Google Scholar 

  20. R. Muraleedharan, L.A. Osadciw, Cognitive routing protocol for sensor based intelligent transportation system, in Wireless Technologies in Intelligent Transportation Systems ed. by M. Zhou, Y. Zhang, L.T. Yang (Nova Science Publishers, USA, 2009) ISBN 978-1-60741-588-6

    Google Scholar 

  21. B. Otis, Y.H. Chee, J. Rabaey, A \(400 \mu \text{ W-RX }\), 1.6mW-TX super-regenerative transceiv-er for wireless sensor networks. IEEE ISSCC 1, 396–397 (2005). doi: 10.1109/ISSCC.2005.1494036

    Google Scholar 

  22. N. Pletcher, S. Gambini, J. Rabaey, A \(65\mu \text{ W }\), 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes. IEEE CICC, 539–542 (2007). doi: 10.1109/CICC.2007.4405789

    Google Scholar 

  23. S. Von der Mark, R. Kamp, M. Huber, G. Boeck, Three stage wakeup scheme for sensor networks. SBMO/IEEE MTT-S 205–208 (2005). doi. 10.1109/IMOC.2005.1579978

    Google Scholar 

  24. J. Ansari, D. Pankin, P. Mähönen, Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. PIMRC 1–5, (2008). doi:10.1109/PIMRC.2008.4699501

    Google Scholar 

  25. B. Van der Doorn, W. Kavelaars, K. Langendoen, A prototype low-cost wakeup radio for the 868 MHz band. IJSNET 5, 22–32 (2009). doi:10.1504/IJSNET.2009.023313

    Article  Google Scholar 

  26. Austria Microsystems (2010) AS3933 3-D Low Frequency RF Wake-up Receiver. http://www.austriamicrosystems.com/Wake-up-receiver/AS3933. Accessed 12 Dec 2010

  27. A. Sanchez, J. Aguilar, S. Blanc, J.J. Serrano, RFID-based wake-up system for wireless sensor networks. Proc. SPIE 8067. 806708 (2011). doi. 10.1117/12.887039

    Google Scholar 

  28. G.U. Gamm, M. Kostic, M. Sippel, L.M. Reindl, Low power wireless sensor node for use in building automation, in IEEE 12th Annual Wireless and Microwave Technology Conference (WAMICON), pp. 1–6 (2011). doi: 10.1109/WAMICON.2011.5872856

    Google Scholar 

  29. C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava, Optimizing sensor networks in the energy-latency-density design space. IEEE Trans. Mobile Comput. 1(1), 70–80 (2002). doi:10.1109/TMC.2002.1011060

    Article  Google Scholar 

  30. A.G. Ruzzelli, R. Jurdak, G.M.P. O’Hare, On the RFID wake-up impulse for multihop sensor network, in Proceedings Convergence of RFID and Wireless Sensor Networks and Their Applications (SenseID) Workshop at ACM Int’l Conference Embedded Networked Sensor Systems (Sensys ’07), Nov 2007

    Google Scholar 

  31. R. Jurdak, A.G. Ruzzelli, G.M.P. O’Hare, Multi-hop RFID wake-up radio: Design, evaluation and energy tradeoffs, in ICCCN’08, 1–8 (2008). doi. 10.1109/ICCCN.2008.ECP.124

    Google Scholar 

  32. H. Ba, I. Demirkol, W. Heinzelman, Feasibility and benefits of passive RFID wake-up radios for wireless sensor networks, in Global Telecommunications Conference (GLOBECOM 2010), pp. 1–5 (2010). doi: 10.1109/GLOCOM.2010.5683585

    Google Scholar 

  33. H. Javaheri, G. Noubir, S. Noubir, RF control of biological systems: Applications to wireless sensor networks, in Proceedings of Nano-Net, Jan 2009

    Google Scholar 

  34. D.H. Goldberg, A.G. Andreou, P. Julian, P. Pouliquen, L. Riddle, R. Rosasco, VLSI implementation of an energy-aware wake-up detector for an acoustic surveillance sensor network. ACM Trans. Sensor Networks. 2(4), 594–611 (2006)

    Article  Google Scholar 

  35. M. Malinowski, M. Moskwa, M. Feldmeier, M. Laibowitz, J.A. Paradiso, CargoNet: a low-cost micropower sensor node exploiting quasi-passive wakeup for adaptive asychronous monitoring of exceptional events, in Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, Sydney (2007). doi: 10.1145/1322263.1322278

    Google Scholar 

  36. S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: Survey and implications, Department of Computer Science and Engineering (CSE), Indian Institute of Technology Bombay (IITB), Tech. Rep. IITB/CSE/2008/December/19. TR-CSE-2008-19 (2008)

    Google Scholar 

  37. A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson, Wireless sensor networks for habitat monitoring, in Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, Sept28–28, Atlanta (2002). doi:10.1145/570738.570751

    Google Scholar 

  38. M. Perillo, W. Heinzelman, Wireless Sensor Network Protocols (Appears in Fundamental Algorithms and Protocols for Wireless and Mobile Networks). (CRC Hall, Boca Raton, 2005)

    Google Scholar 

  39. S.-C. Wang, A. Helmy, Performance limits and analysis of contention-based IEEE 802.11 MAC, in Proceedings 31st IEEE Conference on Local, Computer Networks, pp. 418–425 (2006)

    Google Scholar 

  40. S. Singh, C.S. Raghavendra, PAMAS–power aware multi-access protocol with signalling for ad hoc networks. ACM SIGCOMM Comput. Commun. Rev., 28(3), 5–26 (1998). doi. 10.1145/293927.293928

    Google Scholar 

  41. H. Gong, J. Cao, M. Liu, L. Chen, L. Xie, A traffic aware, energy-efficient MAC protocol for wireless sensor networks. Intl J.Ad Hoc Ubiquitous Comput., 4, 148–156 (2009). doi: 10.1504/IJAHUC.2009.024517

    Google Scholar 

  42. P. Lin, C. Qiao, X. Wang, Medium access control with a dynamic duty cycle for sensor networks, in IEEE Wireless Communications and Networking Conference. vol. 3, pp. 1534–1539 (2004)

    Google Scholar 

  43. T.V. Dam, K. Langendoen, An adaptive energy-efficient MAC protocol for wireless sensor networks, in The First ACM Conference on Embedded Networked Sensor Systems (Sensys‘03). ACM, New York, pp. 171–180 (2003). doi:10.1145/958491.958512

    Google Scholar 

  44. Y. Kwon, Y. Fang, H. Latchmun, Fast collision resolution (FCR) MAC algorithm for wireless local area networks. Proc. IEEE GLOBECOM. 3, 2250–2254 (2002). doi: 10.1109/GLOCOM.2002.1189032

    Google Scholar 

  45. W. Ye, J. Heidemann, D. Estrin, Medium access control with coordinated, adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Networking, pp. 93–506 (2004). doi:10.1109/TNET.2004.828953

    Google Scholar 

  46. IEEE 802.15.4-(2006) IEEE Standard for Information Technology-Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Low Rate Wireless Personal Area Networks (LR-WPANs)

    Google Scholar 

  47. J. Polastre, J. Hill, D. Culler, Versatile low power media access for wireless sensor networks, in ACM SenSys’04. ACM, New York, pp. 95–107 (2004). doi: 10.1145/1031495.1031508

    Google Scholar 

  48. M. Buettner, G.V. Yee, E. Anderson, R. Han, X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks, in ACM SenSys ’06, ACM, New York, pp. 307–320 (2006). doi:10.1145/1182807.1182838

    Google Scholar 

  49. W. Ye, F. Silva, J. Heidemann, Ultra-low duty cycle MAC with scheduled channel polling. SenSys06. ACM, New York, pp: 321–334 (2006). doi:10.1145/1182807.1182839

    Google Scholar 

  50. A. El-Hoiydi, J.-D. Decotignie, WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks, in First Int. Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS). Lecture Notes in Computer Science. LNCS 3121 (2004)

    Google Scholar 

  51. Y. Sun, O. Gurewitz, D.B. Johnson, RI-MAC: A receiver-initiated asynchronous duty cycle MAC protocol for dynamic traffic loads in wireless sensor networks. SenSys08. ACM, New York, pp. 1–14 (2008). doi: 10.1145/1460412.1460414

    Google Scholar 

  52. L. Tang, Y. Sun, O. Gurewitz, D.B. Johnson, PW-MAC: An energy-efficient predictive-wakeup MAC protocol for wireless sensor networks, in Proceedings of the 30th IEEE International Conference on Computer Communications (INFOCOM 2011), pp: 1305–1313 (2011)

    Google Scholar 

  53. K. Kunert, TDMA-based MAC protocols for wireless sensor networks, in State of the Art and Important Research Issues. http://www2.hh.se/staff/tola/ces_2005/papers/kristina_kunert_final.pdf (2005)

  54. W.R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor networks, in Proceedings of the HICSS ’00. IEEE Computer Society. Washington, DC (2000). doi: 10.1109/HICSS.2000.926982

    Google Scholar 

  55. G. Pei, C. Chien, Low power TDMA in large wireless sensor networks, in Military Communications Conference, 2001. MILCOM 2001. Communications for Network-Centric Operations: Creating the Information Force. IEEE, vol. 1, pp. 347–351 (2002). doi:10.1109/MILCOM.2001.985817

  56. B. Tavli, W. Heinzelman, MH-TRACE: multihop time reservation using adaptive control for energy efficiency. Selected Areas in Communications. IEEE J. 22(5), 942–953 (2004). doi:10.1109/JSAC.2004.826932

    Google Scholar 

  57. S.S. Kulkarni, M.U. Arumugam, TDMA service for sensor networks, in Proceedings of the 24th International Conference on Distributed Computing Systems Workshops. IEEE Computer Society. Washington, pp. 604–609 (2004)

    Google Scholar 

  58. S. Cho, K. Kanuri, J.-W. Cho, J.-Y. Lee, S.-D. June, Dynamic Energy Efficient TDMA-based MAC Protocol for Wireless Sensor Networks (Autonomic and Autonomous Systems and International Conference on Networking and Services). (Papeete, Tahiti, 2005), pp. 48–48

    Google Scholar 

  59. J. Mao, Z. Wu, X. Wu, A TDMA scheduling scheme for many-to-one communications in wireless sensor networks. Comput. Commun. 30(4), 863–872 (2007). doi:10.1016/j.comcom.2006.10.006

    Article  Google Scholar 

  60. V. Rajendran, J. Garcia-Luna-Aceves, K. Obraczka, Energy-efficient, application-aware medium access for sensor networks, in 2nd IEEE Conference on Mobile Ad-hoc and Sensor Systems (MASS 2005) (2005). doi: 10.1109/MAHSS.2005.1542852

    Google Scholar 

  61. L. Campelli, A. Capone, M. Cesana, A receiver oriented MAC protocol for wireless sensor networks. In mobile adhoc and sensor systems. IEEE International conference, pp 1–10 (2007). doi: 10.1109/MOBHOC.2007.4428626

    Google Scholar 

  62. L.V.. Hoesel, P. Havinga, A lightweight medium access protocol (LMAC) for wireless sensor networks, in 1st Intl Workshop on Networked Sensing Systems (INSS) Tokyo, Japan, pp 205–208 (2004)

    Google Scholar 

  63. S. Chatterjea, L.V. Hoesel, P. Havinga, AI-LMAC: An adaptive information-centric and lightweight MAC protocol for wireless sensor networks, in 2nd Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing, pp. 381–388 (2004). doi: 10.1109/ISSNIP.2004.1417492

    Google Scholar 

  64. I. Demirkol, C. Ersoy, F. Alagoz, MAC protocols for wireless sensor networks: A survey. IEEE Commun. Magaz. 44(4), 115–121 (2006). doi:10.1109/MCOM.2006.1632658

    Article  Google Scholar 

  65. L. Deliang, P. Fei, Energy-efficient MAC protocols for Wireless Sensor Networks (Information and Communication Technologies). (Beihang University, Beijing, 2009)

    Google Scholar 

  66. I. Rhee, A. Warrier, M. Aia, J. Min, Z-MAC: A hybrid MAC for wireless sensor networks. Networking. IEEE/ACM Trans. 16(3), 511–524 (2008)

    Article  Google Scholar 

  67. S. Ray, I. Demirkol, W. Heinzelman, ATMA: Advertisement-based TDMA protocol for bursty traffic in wireless sensor networks, in Global Telecommunications Conference (GLOBECOM 2010) (2010). doi: 10.1109/GLOCOM.2010.5683930

    Google Scholar 

  68. S. Ray, I. Demirkol, W. Heinzelman, ADV-MAC: Advertisement-based MAC protocol for wireless sensor networks, MobiQuitous ’09, pp. 1–2, July 2009

    Google Scholar 

  69. R. Jurdak, A.G. Ruzzelli, G. O’Hare, Radio sleep mode optimization in wireless sensor networks. IEEE Trans. Mobile Comput. 9(7), 955–968 (2010)

    Article  Google Scholar 

  70. A. Kansal, J. Hsu, S. Zahedi, M.B. Srivastava, Power management in energy harvesting sensor networks. Trans. Embedded Comput. Sys. 6(4), 2007 (2007)

    Google Scholar 

  71. A. Eu, W.K. Seah, H.-P. Tan, A study of MAC schemes for wireless sensor networks powered by ambient energy harvesting, in WICON ’08 Proceedings of the 4th Annual International Conference on Wireless Internet, pp. 1–9 (2008)

    Google Scholar 

  72. X. Fafoutis, N. Dragoni, ODMAC: An on-demand MAC protocol for energy harvesting - wireless sensor networks, in Proceedings of the 8th ACM Symposium on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks. PE-WASUN ’11, pp 49–56 (2011)

    Google Scholar 

  73. J. Kim, J.-W. Lee, Energy adaptive MAC protocol for wireless sensor networks with RF energy transfer, in Proceedings of the Third International Conference on Ubiquitous and Future Networks (ICUFN). Dalian, China, pp. 89–94 (2011)

    Google Scholar 

  74. P. Santi, Topology control in wireless ad hoc and sensor networks. ACM Comput. Survey (CSUR) 37(2), 164–194 (2005). doi:10.1145/1089733.1089736

    Article  Google Scholar 

  75. Y. Xu,, J. Heidemann, D. Estrin, Geography-informed energy conservation for ad hoc routing, in 7th Annual International Conference on Mobile Computing and Networking, pp. 70–84 (2001)

    Google Scholar 

  76. B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, Span: An energy-efficient coordination algorithm for topology maintenance, in Ad Hoc Wirleess Networks, vol. 8, issue 5, pp. 481–494. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  77. A. Cerpa, D. Estrin, Ascent: Adaptive self-configuring sensor networks topologies. IEEE Trans. Mobile Comput. 3, 3, 272–285 (2002)

    Google Scholar 

  78. H. Frey, D. Gorgen, Geographical cluster-based routing in sensing-covered network. IEEE Trans. Parallel Distributed Syst. 17(9), 899–911 (2006). doi:10.1109/TPDS.2006.124

    Article  Google Scholar 

  79. D. Simplot-Ryl, I. Stojmenović, J. Wu, Energy-efficient backbone construction, broadcasting, and area coverage in sensor networks, in Handbook of Sensor Networks: Algorithms and Architectures ed. by I. Stojmenović. Wiley, Hoboken. doi: 10.1002/047174414X.ch11

    Google Scholar 

  80. O. Yang, W. Heinzelman, A better choice for sensor sleeping, in 6th European Conference on Wireless Sensor Networks (EWSN ’09) (2008)

    Google Scholar 

  81. R. Zheng, R. Kravets, On-demand power management for ad hoc networks, in The 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 1, pp. 481–491 (2003)

    Google Scholar 

  82. H. Wang, W. Wang, D. Peng, H. Sharif, A route-oriented sleep approach in wireless sensor network, in The 10th IEEE Singapore International Conference on Communication Systems, pp. 1–5 (2006)

    Google Scholar 

  83. H. Cheng, X. Jia, An energy efficient routing algorithm for wireless sensor networks, in International Conference on Wireless Communications. Networking and Mobile Computing, vol. 2, pp. 905–910 (2005)

    Google Scholar 

  84. K.E. Haynes, R.R. Stough, R.G. Kulkarni, Towards a Percolation Model of Accessibility. http://www.geovista.psu.edu/sites/geocomp99/Gc99/034/abs99-034.htm (1999)

  85. O. Yang, Sleeping Strategies for Wireless Sensor Networks, PhD Dissertation. University of Rochester, 2011

    Google Scholar 

  86. X. Hou, T. Tipper, J.F. Kabara, D. Yupho, GSP: Gossip-based sleep protocol for energy efficient routing in wireless sensor networks, in The 16th International Conference on Wireless Communications. Calgary, Alberta, Canada (2004)

    Google Scholar 

  87. S. Dulman, T. Nieberg, J. Wu, P. Havinga, Trade-Off between traffic overhead and reliability in multipath routing for wireless Ssensor networks, in Wireless Communications and Networking Conference, pp. 1918–1922 (2003)

    Google Scholar 

  88. B. Yahya, J. Ben-Othman, REER: Robust and energy efficient multipath routing protocol for wireless sensor networks, in Global Telecommunications Conference, pp. 1–7 (2009)

    Google Scholar 

  89. L. He, Efficient multi-path routing in wireless sensor networks, in The 6th International Conference on Wireless Communications Networking and Mobile, Computing, pp. 1–4 (2010)

    Google Scholar 

  90. O. Yang, W. Heinzelman, Sleeping multipath routing: A trade-off between reliability and lifetime in wireless sensor networks. Global Communication Conference, Houston (2011)

    Google Scholar 

  91. C. Zhu, L. Yang, L. Shu, L. Wang, T. Hara, Sleep Scheduling Towards Geographic Routing in Duty-Cycled Sensor Networks with A Mobile Sink, in The 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. Salt Lake City (2011)

    Google Scholar 

  92. R.W. Ha, P.-H. Ho, X.S. Shen, Cross-layer organization for wireless sensor networks using sense-sleep trees. Proc. WirelessCom, 2, 952–957 (2005)

    Google Scholar 

  93. S. Liu, M. Sha, L. Huang, ORAS: Opportunistic routing with asynchronous sleep, in International Conference on Future Computer and Communication (ICFCC 2010). (IEEE Press, Wuhan, China, 2010)

    Google Scholar 

  94. S. Nath, P.B. Gibbons, Communicating via fireflies: geographic routing on duty-cycled sensors, in Proceedings of the 6th International Conference on Information Processing in Sensor Networks. IPSN ’07, pp 440–449 (2007)

    Google Scholar 

  95. R. Ha, A Sleep Scheduling Based Cross Layer Design Approach for Application Specific Wireless Sensor Network, Dissertation. University of Waterloo, Canada (2006)

    Google Scholar 

  96. International Workshops: XRA, IWSN, MEGA, and ICSE (Springer, Harbin, 2006)

    Google Scholar 

  97. S. Liu, Y. Bai, M.o. Sha, Q. Deng, D. Qian, CLEEP: A novel cross-layer energy-efficient protocol for wireless sensor networks, in 4th International Conference on Wireless Communications. Networking and Mobile Computing. WiCOM ’08. pp. 1–4 (2008)

    Google Scholar 

  98. O. Yang, W. Heinzelman, Modeling and performance analysis for duty-cycled MAC protocols in wireless sensor networks, in IEEE Transactions on Mobile Computing, pp: 905–921 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendi Heinzelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muraleedharan, R., Demirkol, I., Yang, O., Ba, H., Ray, S., Heinzelman, W. (2014). Sleeping Techniques for Reducing Energy Dissipation. In: Ammari, H. (eds) The Art of Wireless Sensor Networks. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40009-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40009-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40008-7

  • Online ISBN: 978-3-642-40009-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics