Data Gathering in Wireless Sensor Networks

Chapter

Abstract

Data gathering is one of the primary operations carried out in Wireless Sensor Networks (WSNs). It involves data collection with aggregation and data collection without aggregation, referred to as data aggregation and data collection respectively. In the last decade, many techniques for these two applications are proposed, with different focuses, such as accuracy, reliability, time complexity, and so on. This chapter reviews the state of the art of data aggregation and data collection techniques in order to present a comprehensive guidance on how to choose a more appropriate approach for different applications. The definitions of data aggregation and data collection are firstly introduced. Subsequently, the challenges of designing effective data aggregation and data collection methods are discussed. Then some typical data aggregation techniques and their classifications are presented. Particularly, a latest distributed data aggregation algorithm (DAS) is illustrated in details. For data collection, we begin with some new advances and then introduce several new tree-based and cell-based data collection algorithms. Finally, this chapter is ended by pointing out some possible future research directions.

References

  1. 1.
    I. Abraham, D. Malkhi, Probabilistic quorums for dynamic systems. Distrib. Comput. 18(2), 113–124 (2005)CrossRefMATHGoogle Scholar
  2. 2.
    K. Akkaya, M. Demirbas, R.S. Aygun, The impact of data aggregation on the performance of wireless sensor networks. Wireless Commun. Mob. Comput. 8, 171–193 (2008)CrossRefGoogle Scholar
  3. 3.
    H. Alzaid, E. Foo, and J.G. Nieto, Secure data aggregation in wireless sensor networks: a survey, in CRPIT (2008)Google Scholar
  4. 4.
    T. Arici, B. Gedik, Y. Altunbasak, and L. Liu, PINCO: a pipelined in-network compression scheme for data collection in wireless sensor networks, in ICCCN (2003)Google Scholar
  5. 5.
    Z. Bar-Yossef, R. Friedman, and G. Kliot, RaWMS—Random walk based lightweight membership service for wireless ad hoc networks. ACM Trans. Comput. Syst. 26(2), 1–66 (2008)Google Scholar
  6. 6.
    D. Borsetti, C. Casetti, C.-F. Chiasserini, M. Fiore, J. María, Virtual data mules for data collection in road-side sensor networks, in ACM MobiOpp (2010)Google Scholar
  7. 7.
    Z. Cai, S. Ji, J. He, A.G. Bourgeois, Optimal distributed data collection for asynchronous cognitive radio networks, in IEEE ICDCS (2012)Google Scholar
  8. 8.
    I. Chatzigiannakis, A. Kinalis, S. Nikoletseas, Sink mobility protocols for data collection in wireless sensor netowrks, in ACM MOBIWAC (2006)Google Scholar
  9. 9.
    S. Chen, Y. Wang, X.-Y. Li, X. Shi, Order-optimal data collection in wireless sensor networks: delay and capacity, in IEEE SECON (2009)Google Scholar
  10. 10.
    X. Chen, X. Hu, J. Zhu, Minimum data aggregation time problem in wireless sensor networks, in IEEE MSN (2005)Google Scholar
  11. 11.
    S. Chen, Y. Wang, X.-Y. Li, X. Shi, Data collection capacity of random-deployed wireless sensor networks, in IEEE GLOBECOM (2009)Google Scholar
  12. 12.
    S. Chen, S. Tang, M. Huang, Y. Wang, Capacity of data collection in arbitrary wireless sensor networks, in IEEE INFOCOM (2010)Google Scholar
  13. 13.
    S. Chen, M. Huang, S. Tang, Y. Wang, Capacity of data collection in arbitrary wireless sensor networks, in IEEE Transactions on Parallel and Distributed Systems (2011)Google Scholar
  14. 14.
    S. Chen, Y. Wang, X.-Y. Li, X. Shi, Capacity of data collection in randomly-deployed wireless sensor networks. Wireless Netw. 17, 305–318 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Cheng, J. Li, Sampling based (epsilon, delta)-approximate aggregation algorithm in sensor networks, in ICDCS (2009)Google Scholar
  16. 16.
    S. Cheng, J. Li, Z. Cai, O(\(\epsilon \))-approximation to physical world by sensor networks, in IEEE INFOCOM (2013)Google Scholar
  17. 17.
    C.-T. Cheng, C.K. Tse, F.C.M. Lau, A delay-aware data collection network structure for wireless sensor networks. IEEE Sens. J. 11(3), 699–710 (2011)CrossRefGoogle Scholar
  18. 18.
    J. Considine, F. Li, G. Kollios, J. Byers, Approximate aggregation techniques for sensor databases, in ICDE (2004)Google Scholar
  19. 19.
    M. Ding, X. Cheng, Robust event boundary detection in sensor networks—a mixture model based approach, in IEEE INFOCOM (2009)Google Scholar
  20. 20.
    M. Ding, X. Cheng, G. Xue, Aggregation tree construction in sensor networks, in IEEE VTC (2003)Google Scholar
  21. 21.
    K. Du, J. Wu, D. Zhou, Chain-based protocols for data broadcasting and gathering in the sensor networks, in IEEE IPDPS (2003)Google Scholar
  22. 22.
    E. Fasolo, M. Rossi, J. Widmer, M. Zorzi, In-network aggregation techniques for wireless sensor networks: a survey. IEEE Wirel. Commun. 14(2), 70–87 (2007)CrossRefGoogle Scholar
  23. 23.
    F. Ferrari, M. zimmerling, L. Thiele, O. Saukh, Efficient network flooding and time synchronization with glossy, in IPSN (2011)Google Scholar
  24. 24.
    M. D. Francesco, S.K. Das, Data collection in wireless sensor networks with mobile elements: a survey. ACM Trans. Sens. Netw. 8(1), 1–31, 2011Google Scholar
  25. 25.
    J. Guo, J. Fang, X. Chen, Survey on secure data aggregation for wirless sensor networks, in IEEE SOLI (2011)Google Scholar
  26. 26.
    J. He, S. Ji, Y. Pan, Z. Cai, Approximation algorithms for load-balanced virtual backbone construction in wireless sensor networks, Theoretical Computer ScienceGoogle Scholar
  27. 27.
    J. He, S. Ji, M. Yan, Y. Pan, Y. Li, Load-balanced CDS construction in wireless sensor networks via genetic algorithm. Int. J. Sens. Netw. (2011)Google Scholar
  28. 28.
    J. He, S. Ji, M. Yan, Y. Pan, Y. Li, Genetic-algorithm-based construction of load-balanced CDSs in wireless sensor networks, in MILCOM (2011)Google Scholar
  29. 29.
    J. He, Z. Cai, S. Ji, R. Beyah, Y. Pan, A genetic algorithm for constructing a reliable MCDS in probabilistic wireless networks, in WASA (2011)Google Scholar
  30. 30.
    J. He, S. Ji, P. Fan, Y. Pan, Y. Li, Constructing a load-balanced virtual backbone in wireless sensor networks, in ICNC (2012)Google Scholar
  31. 31.
    J. He, S. Ji, Y. Pan, Z. Cai, Load-balanced virtual backbone construction for wireless sensor networks, in COCOA (2012)Google Scholar
  32. 32.
  33. 33.
    Q. Huang, Y. Zhang, Radial coordination for convergecast in wireless sensor networks, in IEEE LCN (2004)Google Scholar
  34. 34.
    S. Jain, R.C. Shah, S. Roy, Exploiting mobility for energy efficient data collection in wireless sensor networks. Mob. Netw. Appl. 11, 327–339 (2006)CrossRefGoogle Scholar
  35. 35.
    P. Jesus, C. Baquero, P.S. Almeida, A survey of distributed data aggregation algorithms, Technical report (2011)Google Scholar
  36. 36.
    S. Ji, Z. Cai, Distributed data collection and its capacity in asynchronous wireless sensor networks, in INFOCOM (2012)Google Scholar
  37. 37.
    S. Ji, Z. Cai, Distributed data collection in large-scale asynchronous wireless sensor networks under the generalized physical interference model. IEEE/ACM Trans. Netw. (in press)Google Scholar
  38. 38.
    S. Ji, R. Beyah, Z. Cai, Snapshot and continuous data collection in probabilistic wireless sensor networks. IEEE Trans. Mob. Comput. (in press)Google Scholar
  39. 39.
    S. Ji, Y. Li, X. Jia, Capacity of dual-radio multi-channel wireless sensor networks for continuous data collection, in IEEE INFOCOM (2011)Google Scholar
  40. 40.
    S. Ji, R. Beyah, Y. Li, Continuous data collection capacity of wireless sensor networks under physical interference model, in IEEE MASS (2011)Google Scholar
  41. 41.
    S. Ji, R. Beyah, Z. Cai, Snapshot/Continuous data collection capacity for large-scale probabilistic wireless sensor networks, in INFOCOM (2012)Google Scholar
  42. 42.
    H. Jiang, S. Jin, C. Wang, Prediction or not? an energy-efficient framework for clustering-based data collection in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(6), 1064–1071 (2011)Google Scholar
  43. 43.
    S. Ji, Z. Cai, Y. Li, X. Jia, Continuous data collection capacity of dual-radio multi-channel wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 23(10), 1844–1855 (October 2012)Google Scholar
  44. 44.
    A. Kesselman, D. Kowalski, Fast distributed algorithm for convergecast in ad hoc geometric radio networks, in IEEE WONS (2005)Google Scholar
  45. 45.
    A. Kinalis, S. Nikoletseas, Scalable data collection protocols for wireless sensor networks with multiple mobile sinks, in IEEE ANSS (2007)Google Scholar
  46. 46.
    H. Lee, A. Keshavarzian, Towards energy-optimal and reliable data collection via collision-free scheduling in wireless sensor networks, in IEEE INFOCOM (2008)Google Scholar
  47. 47.
    H. Lee, A. Keshavarzian, H. Aghajan, Near-lifetime-optimal data collection in wireless sensor networks via spatio-temporal load balancing. ACM Trans. Sens. Netw. 6(3) (2010)Google Scholar
  48. 48.
    Y. Li, L. Guo, S.K. Prasad, An energy-efficient distributed algorithm for minimum-latency aggregation scheduling in wireless sensor networks, in IEEE ICDCS (2011)Google Scholar
  49. 49.
    J. Li, S. Cheng, \((\epsilon,\delta )\)-approximate aggregation algorithms in dynamic sensor networks. IEEE Trans. Parallel Distrib. Syst. 23, 385–396 (2012)CrossRefGoogle Scholar
  50. 50.
    S. Lindsey, C. Raghavendra, K.M. Sivalingam, Data gathering algorithms in sensor networks using energy metrics. IEEE Trans. Parallel Distrib. Syst. 13(9), 924–935 (2002)CrossRefGoogle Scholar
  51. 51.
    F. Liu, X. Cheng, D. Chen, Insider attacker detection in wireless sensor networks, in IEEE INFOCOM (2007)Google Scholar
  52. 52.
    C. Liu, K. Wu, J. Pei, An energy-efficient data collection framework for wireless sensor networks by exploiting spatiotemporal correlation. IEEE Trans. Parallel Distrib. Syst. 18(7), 1010–1023 (2007)CrossRefGoogle Scholar
  53. 53.
    W. Lou, Y. Kwon, H-SPREAD: a hybrid multipath scheme for secure and reliable data collection in wireless sensor networks. IEEE Trans. Veh. Technol. 55(4), 1320–1330 (2006)CrossRefGoogle Scholar
  54. 54.
    C. Luo, F. Wu, J. Sun, C.W. Chen, Compressive data gathering for large-scale wireless sensor networks, in ACM MOBICOM (2009)Google Scholar
  55. 55.
    H. V. Luu, X. Tang, An efficient scheduling algorithm for data collection through multi-path routing structures in wireless sensor networks, in IEEE MSN (2010)Google Scholar
  56. 56.
    G. Manku, Routing networks for distributed hash tables, in PODC (2003)Google Scholar
  57. 57.
    H. Ö. Tan, ï. Körpeoǧlu, Power efficient data gathering and aggregation in wireless sensor networks, SIGMOD Record, vol. 32, No. 4, pp. 66–71 (2003)Google Scholar
  58. 58.
    A.S. Poornima, B.B. Amberker, Secure data collection using mobile data collector in clustered wireless sensor networks. IET Wireless Sens. Syst. 1(2), 85–95 (2011)CrossRefGoogle Scholar
  59. 59.
    R. Rajagopalan, P.K. Varshney, Data-aggregation techniques in sensor networks: a survey. IEEE Commun. Surv. Tutor. 8(4), 48–63 (2006)CrossRefGoogle Scholar
  60. 60.
    C. Ren, X. Mao, P. Xu, G. Dai, Z. Li, Delay and energy efficiency tradeoffs for data collections and aggregation in large scale wireless sensor networks, in IEEE MASS (2009)Google Scholar
  61. 61.
    S. Rothery, W. Hu, P. Corke, An empirical study of data collection protocols for wireless sensor networks, in ACM RealWSN (2008)Google Scholar
  62. 62.
    Y. Sang, H. Shen, Y. Inoguchi, Y. Tan, N. Xiong, Secure data aggregation in wireless sensor networks: a survey, in IEEE PDCAT (2006)Google Scholar
  63. 63.
    N. Shrivastava, C. Buragohain, D. Agrawal, S. Suri, Medians and beyond: new aggregation techniques for sensor networks, in ACM Sensys (2004)Google Scholar
  64. 64.
    J.L.V.M. Stanislaus, M. Younis, Delay-conscious federation of multiple wireless sensor network segments using mobile relays, in IEEE VTC 2012-Fall (2012)Google Scholar
  65. 65.
    I. Stoica, R. Morris, D. Karger, M. Kaashoek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup service for internet applications, in SIGCOMM (2001)Google Scholar
  66. 66.
    X. Tang, J. Xu, Adaptive data collection strategies for lifetime-constrained wireless sensor networks. IEEE Trans. Parrellel Distrib. Syst. 19(6), 721–734 (2008)CrossRefGoogle Scholar
  67. 67.
    M. Thangaraj, P.P. Ponmalar, A survey on data aggregation techniques in wireless sensor networks. Int. J. Res. Rev. Wireless Sens. Netw. 1(3), 36–42 (2011)Google Scholar
  68. 68.
    P.-J. Wan, S.C.-H. Huang, L. Wang, Z. Wan, X. Jia, Minimum-latency aggregation scheduling in multihop wireless networks, in ACM MOBIHOC (2009)Google Scholar
  69. 69.
    F. Wang, J. Liu, Networked wireless sensor data collection: issues, challenges, and approaches. IEEE Commun. Surv. Tutor. 13(4) (2011)Google Scholar
  70. 70.
    C. Wang, H. Ma, Y. He, S. Xiong, Approximate data collection for wireless sensor networks, in IEEE ICPADS (2010)Google Scholar
  71. 71.
    F. Wang, D. Wang, J. Liu, Traffic-aware relay node deployment: maximizing lifetime for data collection wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(8), 1415–1423 (2011)CrossRefGoogle Scholar
  72. 72.
    W. Wu, X. Cheng, M. Ding, K. Xing, F. Liu, P. Deng, Localized outlying and boundary data detection in sensor networks. TKDE 19(8), 1145–1157 (2007)Google Scholar
  73. 73.
    K. Xing, X. Cheng, Location-centric storage for on-demand warning in sensor networks, in IEEE INFOCOM (2005)Google Scholar
  74. 74.
    X. Xu, S. Wang, X. Mao, S. Tang, X. Li, An improved approximation algorithm for data aggregation in multi-hop wireless sensor networks, in FOWANC (2009)Google Scholar
  75. 75.
    Y. Yu, B. Krishnamachari, V.K. Prasanna, Energy-latency tradeoffs for data gathering in wireless sensor networks, in IEEE INFOCOM (2004)Google Scholar
  76. 76.
    B. Yu, J. Li, Y. Li, Distributed data aggregation scheduling in wireless sensor networks, in IEEE INFOCOM (2009)Google Scholar
  77. 77.
    H. Zhang, A. Arora, Y. Choi, M.G. Gouda, Reliable bursty convergecast in wireless sensor networks, in ACM MOBIHOC (2005)Google Scholar
  78. 78.
    Y. Zhang, S. Gandham, Q. Huang, Distributed minimal time convergecast scheduling for small or sparse data sources, in RTSS (2007)Google Scholar
  79. 79.
    J. Zhu, X. Hu, Improved algorithm for minimum data aggregation time problem in wireless sensor networks. J. Syst. Sci. Complexity 21, 626–636 (2008)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceGeorgia State UniversityAtlantaUSA
  2. 2.Department of Computer ScienceKennesaw State UniversityKennesawUSA

Personalised recommendations