Skip to main content

Mobility Management with Integrated Coverage and Connectivity

  • Chapter
  • First Online:
The Art of Wireless Sensor Networks

Part of the book series: Signals and Communication Technology ((SCT))

  • 2629 Accesses

Abstract

Mobility management is a major challenge in mobile ad hoc networks (MANETs), due in part to the dynamically changing network topologies. For mobile wireless sensor networks (WSNs) that are deployed for surveillance applications, it is important to use a mobility management scheme that can empower nodes to make better decisions regarding their positions such that strategic tasks such as target tracking can benefit from node movement. In this chapter, we describe a purposeful and distributed mobility management scheme for mobile sensor networks. The proposed scheme considers node movement decisions as part of a distributed optimization problem, which integrates mobility-enhanced improvement in the quality of target tracking data with the associated negative consequences of increased energy consumption due to locomotion, potential loss of network connectivity, and loss of sensing coverage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin, L. Guibas, A. Kansal, S. Madden, J. Reich, Mobiscopes for human spaces. IEEE Pervasive Comput. 6(2), 20–27 (2007)

    Article  Google Scholar 

  2. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Article  Google Scholar 

  3. M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Sig. Process 50, 174–188 (2002)

    Article  Google Scholar 

  4. J. Aslam, Z. Butler, F. Constantin, V. Crespi, G. Cybenko, D. Rus, Tracking a moving object with a binary sensor network. in Proceedings ACM Conference Embedded Networked Sensor Systems (SenSys), 2003, pp. 150–161

    Google Scholar 

  5. F. Baker, An outsider’s view of MANET, IETF document ID: draft-baker-manet-review-01, IETF (2012), http://datatracker.ietf.org Accessed 18 March 2012

  6. D. Ballari, M. Wachowicz, The design of a Bayesian network for mobility management in wireless sensor networks. in Proceeding 6th International Conference Geographic Information Science (GIScience), 2010, Item ID 7424

    Google Scholar 

  7. Y. Bar-Shalom, W.D. Blair (eds.), Multitarget-Multisensor Tracking: Applications and Advances-Volume III (Artech House, MA, 2000)

    Google Scholar 

  8. D. Braginsky, D. Estrin, Rumor routing for sensor networks. in Proceedings ACM International Workshop on Wireless Sensor Networks and Applications, 2002, pp. 22–31

    Google Scholar 

  9. R.R. Brooks, C. Griffin, D. Friedlander, Distributed target classification and tracking in sensor networks, in Proceedings IEEE, 2003, pp. 1163–1171

    Google Scholar 

  10. Z. Butler, D. Rus, Event-based motion control for mobile-sensor networks. IEEE Pervasive Comput. 2(4), 34–42 (2003)

    Article  Google Scholar 

  11. T. Camp, J. Boleng, V. Davies, A survey of mobility models for ad hoc network research. J. Wireless Comm. Mob. Computing 2, 483–502 (2002)

    Article  Google Scholar 

  12. Q. Cao, T. Yan, J. Stankovic, T. Abdelzaher, Analysis of target detection performance for wireless sensor networks. in Proceedings IEEE International Conference Distributed Computing in Sensor Systems (DCOSS), 2005, pp. 276–292

    Google Scholar 

  13. B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, Span: an energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. in Proceedings ACM Annual International Conference Mobile Computing and Networking (MobiCom), 2001, pp. 85–96

    Google Scholar 

  14. J.C. Chen, K. Yao, R.E. Hudson, Source localization and beamforming. IEEE Signal Process. Mag. 19, 30–39 (2002)

    Article  Google Scholar 

  15. A.J. Coulson, A.G. Williamson, R.G. Vaughan, A statistical basis for lognormal shadowing effects in multipath fading channels. IEEE Trans. Comm. 46, 494–502 (1998)

    Article  Google Scholar 

  16. P. Dutta, D. Culler, Mobility changes everything in low-power wireless sensornets. in Proceedings USENIX/IEEE Workshop on Hot Topics in Operating Systems (HotOS XII), Monte Verita, Switzerland, May 2009. http://static.usenix.org, Accessed 18 March 2012

  17. J. Garcia-Macias, J. Gomez, MANET versus WSN, in Sensor Networks and Configuration, ed. by N.P. Mahalik (Springer, Berlin Heidelberg, 2007), pp. 369–388

    Chapter  Google Scholar 

  18. M.J. Goris, D.A. Gray, I.M.Y. Mareels, Reducing the computational load of a kalman filter. IEE Electron. Lett. 33, 1539–1541 (1997)

    Article  Google Scholar 

  19. Z.J. Haas, B. Liang, Ad hoc mobility management with uniform quorum systems. IEEE/ACM Trans. Networking 7, 228–240 (1999)

    Article  Google Scholar 

  20. D.L. Hall, J. Llinas, Handbook of Multisensor Data Fusion (CRC Press, FL, 2001)

    Google Scholar 

  21. W. R. Heizelman, A. Chandrakasan, H. Balakrishnan, Energy efficient communication protocol for wireless micro sensor networks. in Proceedings International Conference System Sciences, 2000, pp. 1–10

    Google Scholar 

  22. X. Hong, M. Gerla, G. Pei, C. Chiang, A group mobility model for ad hoc wireless networks. in Proceedings ACM/IEEE International Symposium Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), 1999, pp. 53–60

    Google Scholar 

  23. S.S. Iyengar, R.R. Brooks (eds.), Distributed Sensor Networks, (Chapman & Hall/CRC Computer and Information Science Series, , CRC Press 2003)

    Google Scholar 

  24. D. Jea, A. A. Somasundara, M.B. Srivastava, Multiple controlled mobile elements (data mules) for data collection in sensor networks. in Proceedings IEEE International Conference Distributed Computing in Sensor Systems (DCOSS), 2005, pp. 244–257

    Google Scholar 

  25. B. Jiang, K. Han, B. Ravindran, H. Cho, Energy efficient sleep scheduling based on moving directions in target tracking sensor network. in Proceedings IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2008, pp. 1–10

    Google Scholar 

  26. X. Y. Li, P. J. Wan, Y. Wang, C. W. Yi, Fault tolerant deployment and topology control in wireless networks. in Proceedings ACM International Symposium Mobile Ad Hoc Networking and Computing (MobiHoc), 2003, pp. 117–128

    Google Scholar 

  27. B. Y. Liu, P. Brass, O. Dousse, P. Nain, D. Towsley, Mobility improves coverage of sensor network. in Proceedings ACM International Symposium Mobile Ad Hoc Networking and Computing (MobiHoc), 2005, pp. 300–308

    Google Scholar 

  28. J. Liu, J. Liu, J. Reich, P. Cheung, F. Zhao, Distributed group management in sensor networks: algorithms and applications to localization and tracking. Telecommun. Syst. 26(2–4), 235–251 (2004)

    Article  Google Scholar 

  29. Y.G. Mei, Y.H. Lu, Y.C. Hu, C.S. George Lee, Deployment strategy for mobile robots with energy and timing constraints. in Proceedings IEEE International Conference Intelligent Robots and Systems (ICRA), 2005

    Google Scholar 

  30. T. Melodia, D. Pompili, I.F. Akyldiz, Handling mobility in wireless sensor and actor networks. IEEE Tran. Mob. Comput. 9, 160–173 (2010)

    Article  Google Scholar 

  31. Mobile Ad-hoc Networks (MANET), IETF (2012), http://datatracker.ietf.org/wg/manet/charter. Accessed 18 March 2012

  32. T. Moscibroda, R. O’Dell, M. Wattenhofer, R. Wattenhofer, Virtual coordinates for ad hoc and sensor networks. in IEEE Foundations of Mobile Computing, Workshop, 2004, pp. 8–16

    Google Scholar 

  33. M. Paskin, C. Guestrin, J. McFadden, A robust architecture for distributed inference in sensor networks. in Proceedings ACM/IEEE International Conference Information Processing in Sensor Networks (IPSN), 2005, pp. 55–62

    Google Scholar 

  34. S. Phoha, T.F. La Porta, C. Griffin, Sensor Network Operations (Wiley, N.J, 2006)

    Book  Google Scholar 

  35. R. Rao, G. Kesidis, Purposeful mobility for relaying and surveillance in mobile ad-hoc sensors networks. IEEE Trans. Mob. Comput. 3, 225–231 (2004)

    Article  Google Scholar 

  36. A. Roy, S.K. Das, A. Misra, Exploiting information theory for adaptive mobility and resource management in future cellular networks. IEEE Wirel. Comm. Mag. 11, 59–65 (2004)

    Article  Google Scholar 

  37. S. Shakkottai, R. Srikant, N.B. Shroff, Unreliable sensor grids: coverage, connectivity and diameter. in Proceedings IEEE International Conference Computer Communications (INFOCOM), 2003, pp. 1073–1083

    Google Scholar 

  38. R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, D. Estrin, Habitat monitoring with sensor networks. Commun. ACM 47, 33–40 (2004)

    Google Scholar 

  39. R. Tan, G. Xing, J. Wang, H.C. So, Exploiting reactive mobility for collaborative target detection in wireless sensor networks. IEEE Trans. Mob. Comput. 9, 317–332 (2010)

    Article  Google Scholar 

  40. A. Verma, H. Sawant, J. Tan, Selection and navigation of mobile sensor nodes using a sensor network. Pervasive Mob. Comput. 2(1), 65–84 (2006)

    Article  Google Scholar 

  41. X. R. Wang, G. L. Xing, Y. F. Zhang, C. Y. Lu, R. Pless, C. Gill, Integrated coverage and connectivity configuration in wireless sensor networks. in Proceedings ACM Conference Embedded Networked Sensor Systems (SenSys), 2003, pp. 28–39

    Google Scholar 

  42. G. Wang, G. Cao, T. La Porta, Movement-assisted sensor deployment. IEEE Trans. Mob. Comput. 5, 640–652 (2006)

    Article  Google Scholar 

  43. Y.C. Wang, F.J. Wu, Y.C. Tseng, Mobility management algorithms and applications for mobile sensor networks. Wireless Communications and Mobile Computing 12, 7–21 (2012)

    Article  Google Scholar 

  44. G. Wittenburg, N. Dziengel, C. Wartenburger, J. Schiller, A system for distributed event detection in wireless sensor networks. in Proceedings ACM/IEEE International Conference Information Processing in Sensor Networks (IPSN), 2010, pp. 94104

    Google Scholar 

  45. J. Wu, Extended dominating-set-based routing in ad hoc wireless networks with unidirectional links. IEEE Trans. Parallel Dist. Syst. 13, 866–881 (2002)

    Article  Google Scholar 

  46. G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, C. Gill, Integrated coverage and connectivity configuration for energy conservation in sensor networks. ACM Trans. Sens. Netw. 1, 36–72 (2005)

    Article  Google Scholar 

  47. G. Xing, J. Wang, Z. Yuan, R. Tan, L. Sun, Q. Huang, X. Jia, H.C. So, Mobile scheduling for spatiotemporal detection in wireless sensor network. IEEE Trans. Parallel Dist. Syst. 21, 1851–1866 (2010)

    Article  Google Scholar 

  48. Y. Xu, J. Heidemann, D. Estrin, Geography-informed energy conservation for ad hoc routing. in Proceedings ACM Annual InterntionL Confernece Mobile Computing and Networking (MobiCom), 2001, pp. 70–84

    Google Scholar 

  49. F. Xue, P.R. Kumar, The number of neighbors needed for connectivity of wireless networks. Wireless Netw. 10(2), 169–181 (2004)

    Article  Google Scholar 

  50. Y. Yang, D. Lee, M. Park, H. Peter, Dynamic enclose cell routing in mobile sensor networks. in Proceedings IEEE Asia-Pacific Software Engineering Conference (APSEC), 2004, pp. 736–737

    Google Scholar 

  51. F. Zhao, J. Liu, J. Liu, L. Guibas, J. Reich, Collaborative signal and information processing: an information directed approach. Proc. IEEE 91, 1199–1209 (2003)

    Article  Google Scholar 

  52. Y. Zhuang, J. Pan, L. Cai, Minimizing energy consumption with probabilistic distance models in wireless sensor networks. in Proceedings IEEE International Conference Computer Communications (INFOCOM), 2010, pp. 1–9

    Google Scholar 

  53. Y. Zou, K. Chakrabarty, Sensor deployment and target localization based on virtual forces. in Proceedings IEEE International Conference Computer Communications (INFOCOM), 2003, pp. 1293–1303

    Google Scholar 

  54. Y. Zou, K. Chakrabarty, A distributed coverage- and connectivity-centric technique for selecting active nodes in wireless sensor networks. IEEE Trans. Comput. 54, 978–991 (2005)

    Article  Google Scholar 

  55. Y. Zou, K. Chakrabarty, Distributed mobility management for target tracking in mobile sensor networks. IEEE Trans. Mob. Comput. 8, 872–887 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by DARPA, and administered by the Army Research Office under Emergent Surveillance Plexus MURI Award No. DAAD19-01-1-0504. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the sponsoring agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Chakrabarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zou , Y., Chakrabarty, K. (2014). Mobility Management with Integrated Coverage and Connectivity. In: Ammari, H. (eds) The Art of Wireless Sensor Networks. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40009-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40009-4_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40008-7

  • Online ISBN: 978-3-642-40009-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics