Skip to main content

Concepts and Approaches in the Study of the Pelvis

  • Chapter
  • First Online:
The Pelvis

Abstract

During the ages of pelvic studies, certain concepts and approaches were found useful, and others were discarded. The applied techniques and models are demonstrated using examples from morphological approaches (symmetry, ontogeny, and comparative anatomy) and functional ones (kinematic chains, pelvic organ movements). This chapter also concentrates on biomechanics of the pelvis together with its lower extremities and focuses on finite element modeling, where morphology and physiology reinforce each other for the study of pelvic forces and movements. By applying these methods, for example, low back pain caused by changes in the self-locking mechanism of the sacrum with its tightening ligaments becomes doubtful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  1. Literature has been grouped in reference lists of several chapters in those cases where arguments are difficult to entangle or published over several articles or books. In cases of citation the article or book involved is indicated by the reference number together with a capital Arabic letter.

    Google Scholar 

  2. Dullemeyer P (1974) Concepts and approaches in animal morphology. Van Gorcum Co, Assen

    Google Scholar 

  3. Albinus (1747) Tabulae sceleti et musculosum corporis humani. J & H Verbeek, Leiden

    Google Scholar 

  4. Vitrivius-Pollio M (25 BC) (1993) De architectura libri X. In: Heineman (ed.) Harvard University Press, Cambridge

    Google Scholar 

  5. Punt H (1983) Bernhard siegfried albinus (1697–1770) on human nature: anatomical and physiological ideas in eighteenth century Leiden. B. M. Israel B. V, Amsterdam

    Google Scholar 

  6. Böker H (1935) Vergeleichende biologische anatomie der wirbeltiere I. Gustav Fischer Verlag, Jena

    Google Scholar 

  7. Letters to the editor (1996) J Bone Joint Surg Am 78A:1945–1946

    Google Scholar 

  8. Schenk R (1995) Formation of the pelvis by membranous instead of endochondral ossification. J Bone Joint Surg Am 77:940–956; Schenk R (1996) Letter to the editor. J Bone Joint Surg Am 78A:1945

    Google Scholar 

  9. Einhorn TA (1995) Current concepts review enhancement of fracture healing. J Bone Joint Surg Am 77A:940–956; Einhorn TA (1996) Letter to the editor. J Bone Joint Surg Am 78A:1945

    Google Scholar 

  10. Buckwalter JA, Glimcher MJ, Recker R (1996) Letter to the editor. J Bone Joint Surg Am 78A:1945–1946

    Google Scholar 

  11. Ponsetti IV (1978) Growth and development of the acetabulum in the normal child. Anatomical, histological, and roentgenographic studies. J Bone Joint Surg Am 60A:575–583

    Google Scholar 

  12. Abitbol MM (1988) Evolution of the ischial spine and of the pelvic floor in the homino idea. Am J Phys Anthropol 75:53–67

    Article  CAS  PubMed  Google Scholar 

  13. Coleman WH (1969) Sex differences in the growth of the human bony pelvis. Am J Phys Anthropol 31:125–151

    Article  CAS  PubMed  Google Scholar 

  14. Moffat DB (1993) Lecture notes on anatomy, 2nd edn. Blackwell Science Publisher, London

    Google Scholar 

  15. Jansen M (1927) De Groote omvang der hersenen de wijde bekkenring en de veelheid der heupaandoeningen in den mensch. S. C. Van Doesburgh, Leiden

    Google Scholar 

  16. Le Damany P (1923) La luxation congenitale de la hanche. Flammarion, Paris

    Google Scholar 

  17. Gould J (1989) The mismeasure of man. Penguin books, England

    Google Scholar 

  18. Töndury G (1943) Missbildung und experiment. Vierteljahrsschrift Naturforsch, Gesellsch, Zürich, 87:245–260

    Google Scholar 

  19. Töndury G (1944) Missbildung und Vererbung. Archiv Julius Klaus-Stiftung. 19:492–509; Töndury G (1939) Beitrag zur Kenntnis der Fehlbildung mit Defekten am hinteren Körperende. Anat Embryol 110:322–343

    Google Scholar 

  20. Nieuwenhuys R (1975) Bolk’s studies of segmental anatomy. Acta Morphol Neerl-Scand 13:7–34; Bolk L (1899) De sympodie, een voorbeeld pathologische segmentaal-anatomie. Geneesk Bladen 6:301–335

    Google Scholar 

  21. Hartwig NG (1992) Pathoembryology: developmental processes and congenital malformations. Thesis, Leiden University, Leiden

    Google Scholar 

  22. Coleman WH (1969) Sex differences in the growth of the human bony pelvis. Am J Phys Anthropol 31:125–152

    Article  CAS  PubMed  Google Scholar 

  23. Serres E (1832) Recherches d’anatomie transcendante et pathologique. Théorie des formations et deformations organiques, appliqué à l’anatomie de Ritta-Christina, et de la duplicité mostrueuse. J. B. Ballière, Paris

    Google Scholar 

  24. Leroi AM (2003) Mutants: on genetic variety and the human body. Penguin Books, London

    Google Scholar 

  25. Bertram JEA (2007) How animals move. Studies in the mechanics of the tetrapod skeleton. J Exp Biol 210:2401–2402 (JEB Classics)

    Google Scholar 

  26. Gray J (1939) Croonian lecture: aspects of animal locomotion. Proc R Soc Lond B 128:28–62

    Article  Google Scholar 

  27. Alexander, RMN Dynamics of dinosaurs and other extinct giants. Columbia University Press, New York; Alexander RMN, Goldspink G (1977) Mechanics and energetics of animal locomotion. Chapman and Hall, London; Alexander RMN (1982) Optima for animals. E. Arnold Publ Lim., London

    Google Scholar 

  28. Romer AS (1962) The vertebrate body. 3th edn, W. B. Saunders Co, Philadelphia; Walker WF (1987) Functional anatomy of the vertebrates. An evolutionary perspective. Saunders Coll. Publ., Philadelphia; Starck D (1979) Vergeleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage. 2: Das Skeletsystems. Der Beckengürtel pp 505–535. Springer, Berlin

    Google Scholar 

  29. Slijper EJ (1946) Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Proc Kon Acad Wetensch 42:1–128; Kummer B (1959) Bauprinzipien des Säugerskeletes. Thieme Verlag, Stuttgart, pp 1–235; Preuschoft H, Günther MM (1994) Biomechanics and body shape in primates compared with horses. Z Morph Antrop 80:149–165

    Google Scholar 

  30. Young JZ (1975) The life of mammals: their anatomy and physiology. Clarendon Press Oxford, Oxford

    Google Scholar 

  31. D’Arcy-Thompson W (1917) On growth and form chapter XVI on form and mechanical efficiency. Cambridge University Press; de Cocq P (2012) The biomechanical interaction between horse and rider. Thesis, Wageningen University, Wageningen

    Google Scholar 

  32. Kummer B (1992) The biomechanical problems of standing. Ann Anat 174:33–39; Kummer B (1965) Die Biomechanik der aufrechten Haltung. Mitt Naturf Ges in Bern, NF 22:240–259

    Google Scholar 

  33. Vleeming A et al (1997) Movement, stability and low back pain: the essential role of the pelvis. Churchill Livingstone, New York, pp 1–612

    Google Scholar 

  34. Mruthyunjaya TS (2003) Kinematic structure of mechanisms revisited. Mech Machine Theory 38:279–320; Luh J, Zheng YF (1985) Computation of input generalized forces for robots with closed kinematic chain mechanisms. IEEE Robotics Automation 1:95–103

    Google Scholar 

  35. Huson A (1997) Kinematic models and the human pelvis. In: Vleeming A et al (1997) Movement, stability and low back pain: the essential role of the pelvis. Churchill Livingstone, New York, pp 123–131

    Google Scholar 

  36. Von Bertalanffy L (1965) Een biologisch wereld beeld (Das biologische Weltbild). Erven J Bijleveld, Utrecht

    Google Scholar 

  37. Huiskes R, Chao EYS (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomech 16:385–409

    Google Scholar 

  38. Preuschoft H (2004) Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture? J Anat 204:363–384

    Article  PubMed  Google Scholar 

  39. Alexander RMN (2004) Bipedal animals, and their differences from humans. J Anat 204:321–330

    Google Scholar 

  40. Dalstra M (1997) Biomechanics of the human pelvic bone. In: Vleeming A et al (eds) Movement, stability and low back pain: the essential role of the pelvis. Churchill Livingstone, New York, pp 91–102

    Google Scholar 

  41. Janda S, van der Helm FCT, de Blok SB (2003) Measuring morphological parameters of the pelvic floor for finite element modeling purposes. J Biomech 36:749–757

    Google Scholar 

  42. Janda S (2006) Biomechanics of the pelvic floor musculature. Thesis, University Delft; d’Aulignac et al (2005) A shell finite element model of the pelvic floor muscles. Comp Methods Biomech Biomed Eng 8:339–347

    Google Scholar 

  43. Koch WFRM, Marani E (2007) Early development of the human pelvic diaphragm. Adv Anat Embryol Cell Biol 192:1–113; Kinugasa Y et al (2012) Annococcygeal raphe revisited: a histological study using mid-term human fetuses and elderly cadavers. Yonsei Med J 53:849–855

    Google Scholar 

  44. Cosson M, Rabod C, Vallet A et al (2013) Simulation of normal pelvic mobilities in building an MRI- validated biomechanical model. Int Urogynecol J 24:105–112

    Google Scholar 

  45. Rivaux G et al (2013) Comparative analysis of pelvic ligaments: a biomechanics study. Int Urogynecol J 24:135–139

    Article  PubMed  Google Scholar 

  46. Rubod C et al (2012) Biomechanical properties of human pelvic organs. Urology 79:968.e17–968.e22

    Google Scholar 

  47. Mooney V (1997) Sacroiliac joint dysfunction. In: Vleeming A et al (1997) Movement, stability and low back pain: the essential role of the pelvis. Churchill Livingstone, New York, pp 37–52

    Google Scholar 

  48. Sturesson B (1992) Mobility of the pelvis measured in living persons. In: Vleeming A, Mooney V, Snijders CJ, Dorman T (eds) First interdiscip world congress on low back pain and its relation to the sacroiliac joint. San Diego, California, pp 58–60, 5–6 Nov; see also Walker JM (1992) The sacro-iliac joint: a critical review. Phys Ther 72:903–916

    Google Scholar 

  49. Snijders et al (1997) Biomechanics of the interface between spine and pelvis in different postures. In: Vleeming A et al (1997) Movement, stability and low back pain: the essential role of the pelvis. Churchill Livingstone, New York, pp 103–113

    Google Scholar 

  50. Gosselin G, Lafond D, Normand MC (1998) Sacrum load-displacement behaviour and SI locking mechanism in weight lifters. (English translation of) Lafond D, Normand MC, Gosselin G (1998) Raport force\Déplacement du sacrum et efficacité du mécanisme de verrouillage de l’articulation sacro-iliaque: Etude en conditions expérimentales in vivo. J Can Chiropr Assoc 42:90–100

    Google Scholar 

  51. Dreyfuss P, Dreyer SJ, Cole A, Mayo K (2004) Sacroiliac joint pain. J Am Acad Orthop Surg 12:255–265

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Marani .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marani, E., Koch, W.F. (2014). Concepts and Approaches in the Study of the Pelvis. In: The Pelvis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40006-3_5

Download citation

Publish with us

Policies and ethics