Advertisement

Cavity Enhanced Absorption Spectroscopy with Optical Feedback

  • Jérôme MorvilleEmail author
  • Daniele Romanini
  • Erik Kerstel
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 179)

Abstract

In general, Cavity-Enhanced Absorption Spectroscopy (CEAS) suffers from inefficient and noisy cavity injection when using an unstabilized laser source with a linewidth exceeding that of the cavity resonances. The solution is to tightly frequency lock the laser to the cavity resonance, and drastically reduce its emission linewidth. This has been possible using either the Pound-Drever-Hall technique, giving the NICE-OHMS scheme, or Optical Feedback (OF). Here we review the OF-CEAS method that has the advantage of allowing simple self-locking of the laser to successive cavity modes during a frequency scan. OF-CEAS also produces a stronger linewidth reduction compared to an all-electronic locking loop, and works well with semiconductor lasers possessing a broad emission spectrum modulated by high-frequency phase noise that are difficult or impossible to lock using electronic control. The efficient laser linewidth narrowing and the locking onto successive TEM 0,0 cavity modes provides spectra with both a high S/N and an intrinsically precise and linear frequency scale over the short time of a single laser frequency scan.

Keywords

Cavity Mode Cavity Resonance Optical Feedback Free Spectral Range Feedback Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B, Lasers Opt. 80(8), 1027 (2005). doi: 10.1007/s00340-005-1828-z. http://www.springerlink.com/index/10.1007/s00340-005-1828-z ADSCrossRefGoogle Scholar
  2. 2.
    A. Kachanov, D. Romanini, M. Chenevier, A. Garnache, F. Stoeckel, in Part of SPIE Conference on Air Monitoring and Detection of Chemical and Biological Agents II, Boston, MA, 19–22 September 1999. Proc. SPIE, vol. 3855 (1999), p. 51 CrossRefGoogle Scholar
  3. 3.
    D. Romanini, A.A. Kachanov, J. Morville, M. Chenevier, in Part of SPIE EUROPTO Conference on Environmental Sensing and Applications, CLEO-Europe, Munich, 14–17 June 1999. Proc. SPIE, vol. 3821 (1999), p. 94 CrossRefGoogle Scholar
  4. 4.
    J. Morville, D. Romanini, Appl. Phys. B 74, 495 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    J. Morville, D. Romanini, M. Chenevier, J. Phys. IV 12, 389 (2002) Google Scholar
  6. 6.
    J. Morville, M. Chenevier, A.A. Kachanov, D. Romanini, in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV. Proc. SPIE, vol. 4485 (2002), p. 236 CrossRefGoogle Scholar
  7. 7.
    J. Morville, D. Romanini, A.A. Kachanov, M. Chenevier, Appl. Phys. B, Lasers Opt. 78(3–4), 465 (2004). doi: 10.1007/s00340-003-1363-8. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00340-003-1363-8 ADSCrossRefGoogle Scholar
  8. 8.
    B. Dahmani, L.W. Hollberg, R.E. Drullinger, Opt. Lett. 12(11), 876 (1987). doi: 10.1364/OL.12.000876. http://www.ncbi.nlm.nih.gov/pubmed/19741901 ADSCrossRefGoogle Scholar
  9. 9.
    H. Patrick, C.E. Wieman, Rev. Sci. Instrum. 62(11), 2593 (1991). doi: 10.1063/1.1142236 ADSCrossRefGoogle Scholar
  10. 10.
    A.L. Schawlow, C.H. Townes, Phys. Rev. 112, 1940 (1958) ADSCrossRefGoogle Scholar
  11. 11.
    C. Henry, R. Logan, K. Bertness, J. Appl. Phys. 52(7), 4457 (1981) ADSCrossRefGoogle Scholar
  12. 12.
    A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989) Google Scholar
  13. 13.
    J.C. Habig, J. Nadolny, J. Meinen, H. Saathoff, T. Leisner, Appl. Phys. B, Lasers Opt. 106(2), 491 (2011). doi: 10.1007/s00340-011-4804-9. http://www.springerlink.com/index/10.1007/s00340-011-4804-9 ADSCrossRefGoogle Scholar
  14. 14.
    C.E. Wieman, L.W. Hollberg, Rev. Sci. Instrum. 62(1), 1 (1991) ADSCrossRefGoogle Scholar
  15. 15.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B, Lasers Opt. 31(2), 97 (1983). doi: 10.1007/BF00702605. http://www.springerlink.com/index/10.1007/BF00702605 ADSCrossRefGoogle Scholar
  16. 16.
    D.A. Long, A. Cygan, R.D. van Zee, M. Okumura, C.E. Miller, D. Lisak, J.T. Hodges, Chem. Phys. Lett. 536, 1 (2012). doi: 10.1016/j.cplett.2012.03.035. http://linkinghub.elsevier.com/retrieve/pii/S0009261412003466 ADSCrossRefGoogle Scholar
  17. 17.
    M.S. Taubman, T.L. Myers, B.D. Cannon, R.M. Williams, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 60(14), 3457 (2004). doi: 10.1016/j.saa.2003.12.057. http://www.ncbi.nlm.nih.gov/pubmed/15561632 ADSCrossRefGoogle Scholar
  18. 18.
    D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, H.J. Jost, Appl. Phys. B, Lasers Opt. 83(4), 659 (2006). doi: 10.1007/s00340-006-2177-2. http://www.springerlink.com/index/10.1007/s00340-006-2177-2 ADSCrossRefGoogle Scholar
  19. 19.
  20. 20.
    K.K. Lehmann, D. Romanini, J. Chem. Phys. 105(23), 10263 (1996). doi: 10.1063/1.472955. http://link.aip.org/link/JCPSA6/v105/i23/p10263/s1&Agg=doi ADSCrossRefGoogle Scholar
  21. 21.
    P. Laurent, A. Clairon, C. Breant, IEEE J. Quantum Electron. 25(6), 1131 (1989) ADSCrossRefGoogle Scholar
  22. 22.
    I. Courtillot, J. Morville, V. Motto-Ros, D. Romanini, Appl. Phys. B 85, 407 (2006) ADSCrossRefGoogle Scholar
  23. 23.
  24. 24.
    C.A. Green, N.K. Dutta, W. Watson, Appl. Phys. Lett. 50(20), 1409 (1987). doi: 10.1063/1.97836. http://link.aip.org/link/APPLAB/v50/i20/p1409/s1&Agg=doi ADSCrossRefGoogle Scholar
  25. 25.
    K. Petermann, Laser Diode Modulation and Noise (Kluwer Scientific, Tokyo, 1991) Google Scholar
  26. 26.
    Y. Arakawa, A. Yariv, IEEE J. Quantum Electron. QE-21(10), 1666 (1985) ADSCrossRefGoogle Scholar
  27. 27.
    T. Aellen, R. Maulini, R. Terazzi, N. Hoyler, M. Giovannini, J. Faist, Appl. Phys. Lett. 89, 091121 (2006) ADSCrossRefGoogle Scholar
  28. 28.
    S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P.D. Natale, Phys. Rev. Lett. 104, 083904 (2010) ADSCrossRefGoogle Scholar
  29. 29.
    J. von Staden, T. Gensty, W. Elsäßer, G. Giuliani, C. Mann, Opt. Lett. 31(17), 2574 (2006). doi: 10.1364/OL.31.002574. http://ol.osa.org/abstract.cfm?URI=ol-31-17-2574 ADSCrossRefGoogle Scholar
  30. 30.
    I. Courtillot, J. Morville, V. Motto-Ros, D. Romanini, Appl. Phys. B, Lasers Opt. 85(2–3), 407 (2006). doi: 10.1007/s00340-006-2354-3. http://www.springerlink.com/index/10.1007/s00340-006-2354-3 ADSCrossRefGoogle Scholar
  31. 31.
    V. Motto-Ros, J. Morville, P. Rairoux, Appl. Phys. B, Lasers Opt. 87(3), 531 (2007). doi: 10.1007/s00340-007-2618-6. http://www.springerlink.com/index/10.1007/s00340-007-2618-6 ADSCrossRefGoogle Scholar
  32. 32.
    P. Cermak, M. Triki, A. Garnache, L. Cerutti, D. Romanini, IEEE Photonics Technol. Lett. 22(21), 1607 (2010). doi: 10.1109/LPT.2010.2075922. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5570899 ADSCrossRefGoogle Scholar
  33. 33.
    G. Maisons, P. Gorrotxategi-Carbajo, M. Carras, D. Romanini, Opt. Lett. 35(21), 3607 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    D.J. Hamilton, A.J. Orr-Ewing, Appl. Phys. B, Lasers Opt. 102(4), 879 (2010). doi: 10.1007/s00340-010-4259-4. http://www.springerlink.com/index/10.1007/s00340-010-4259-4 ADSCrossRefGoogle Scholar
  35. 35.
    P. Gorrotxategi-Carbajo, E. Fasci, I. Ventrillard, M. Carras, G. Maisons, D. Romanini, Appl. Phys. B, 309–314 (2013) Google Scholar
  36. 36.
    J. Morville, D. Romanini, Appl. Phys. B, Lasers Opt. 74(6), 495 (2002). doi: 10.1007/s003400200854. http://www.springerlink.com/Index/10.1007/s003400200854 ADSCrossRefGoogle Scholar
  37. 37.
    D.J. Hamilton, M.G.D. Nix, S.G. Baran, G. Hancock, A.J. Orr-Ewing, Appl. Phys. B, Lasers Opt. 100(2), 233 (2009). doi: 10.1007/s00340-009-3811-6. http://www.springerlink.com/index/10.1007/s00340-009-3811-6 ADSCrossRefGoogle Scholar
  38. 38.
    A. Hemmerich, D.H. McIntyre, C. Zimmermann, T.W. Hänsch, Opt. Lett. 15(7), 372 (1990). doi: 10.1364/OL.15.000372. http://www.opticsinfobase.org/abstract.cfm?URI=ol-15-7-372 ADSCrossRefGoogle Scholar
  39. 39.
    E.R.T. Kerstel, R.Q. Iannone, M. Chenevier, S. Kassi, H.J. Jost, D. Romanini, Appl. Phys. B, Lasers Opt. 85(2–3), 397 (2006), doi: 10.1007/s00340-006-2356-1. http://www.springerlink.com/index/10.1007/s00340-006-2356-1 ADSCrossRefGoogle Scholar
  40. 40.
    V. Motto-Ros, M. Durand, J. Morville, Appl. Phys. B, Lasers Opt. 91(1), 203 (2008). doi: 10.1007/s00340-008-2950-5. http://www.springerlink.com/index/10.1007/s00340-008-2950-5 ADSCrossRefGoogle Scholar
  41. 41.
    S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, D. Romanini, Opt. Express 14(23), 11442 (2006) ADSCrossRefGoogle Scholar
  42. 42.
    S. Kassi, A. Campargue, J. Chem. Phys. 137(23), 234201 (2012). doi: 10.1063/1.4769974. http://www.ncbi.nlm.nih.gov/pubmed/23267478 ADSCrossRefGoogle Scholar
  43. 43.
    L.W. Hollberg, M. Ohtsu, Appl. Phys. Lett. 53(11), 944 (1988). doi: 10.1063/1.100077. http://link.aip.org/link/APPLAB/v53/i11/p944/s1&Agg=doi ADSCrossRefGoogle Scholar
  44. 44.
    A. Clairon, B. Dahmani, P. Laurent, C. Breant, in Proceeding of EFTF88, Second European Frequency and Time Forum, Neuchatel, Switzerland (1988), p. 537 Google Scholar
  45. 45.
    H. Li, N.B. Abraham, Appl. Phys. Lett. 53(23), 2257 (1988). doi: 10.1063/1.100271. http://link.aip.org/link/APPLAB/v53/i23/p2257/s1&Agg=doi ADSCrossRefGoogle Scholar
  46. 46.
    H. Li, N.B. Abraham, IEEE J. Quantum Electron. 25(8), 1782 (1989). doi: 10.1109/3.34036. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=34036 ADSCrossRefGoogle Scholar
  47. 47.
    H. Li, H.R. Telle, IEEE J. Quantum Electron. 25(3), 257 (1989). doi: 10.1109/3.18538. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=18538 ADSCrossRefGoogle Scholar
  48. 48.
    C.E. Tanner, B.P. Masterson, C.E. Wieman, Opt. Lett. 13(5), 357 (1988). doi: 10.1364/OL.13.000357. http://www.opticsinfobase.org/abstract.cfm?URI=ol-13-5-357 ADSCrossRefGoogle Scholar
  49. 49.
    J. Morville, M. Chenevier, A.A. Kachanov, D. Romanini, in Proceedings of SPIE, vol. 4485, ed. by A.M. Larar, M.G. Mlynczak (2002), pp. 236–243. doi: 10.1117/12.454256 Google Scholar
  50. 50.
    T.J. Butler, J.L. Miller, A.J. Orr-Ewing, J. Chem. Phys. 126, 174302 (2007). doi: 10.1063/1.2723735 ADSCrossRefGoogle Scholar
  51. 51.
    T.J.A. Butler, D. Mellon, J. Kim, J. Litman, A.J. Orr-Ewing, J. Phys. Chem. A 113(16), 3963 (2009). doi: 10.1021/jp810310b CrossRefGoogle Scholar
  52. 52.
    Y. Gong, B. Li, Y. Han, Appl. Phys. B, Lasers Opt. 93(2–3), 355 (2008),. doi: 10.1007/s00340-008-3247-4. http://www.springerlink.com/index/10.1007/s00340-008-3247-4 ADSCrossRefGoogle Scholar
  53. 53.
  54. 54.
    I. Ventrillard, T. Gonthiez, C. Clerici, D. Romanini, J. Biomed. Opt. 14(6), 64026 (2009). doi: 10.1117/1.3269677. http://www.ncbi.nlm.nih.gov/pubmed/20059264 CrossRefGoogle Scholar
  55. 55.
    M. Hippler, C. Mohr, K.A. Keen, E.D. McNaghten, J. Chem. Phys. 133(4), 44308 (2010). doi: 10.1063/1.3461061. http://www.ncbi.nlm.nih.gov/pubmed/20687651 CrossRefGoogle Scholar
  56. 56.
    E.R.T. Kerstel, in Handbook of Stable Isotope Analytical Techniques, vol. 1, ed. by P.A. De Groot (Elsevier, Amsterdam, 2004), pp. 759–787 Google Scholar
  57. 57.
    E.R.T. Kerstel, L. Gianfrani, Appl. Phys. B, Lasers Opt. 92(3), 439 (2008). doi: 10.1007/s00340-008-3128-x. <GotoISI>://000258703600017 ADSCrossRefGoogle Scholar
  58. 58.
    R.Q. Iannone, S. Kassi, H.J. Jost, M. Chenevier, D. Romanini, H.A.J. Meijer, S. Dhaniyala, M. Snels, E.R.T. Kerstel, Isot. Environ. Health Stud. 45(4), 303 (2009). doi: 10.1080/10256010903172715. http://www.ncbi.nlm.nih.gov/pubmed/19670069 CrossRefGoogle Scholar
  59. 59.
    F. Cairo, J.P. Pommereau, K.S. Law, H. Schlager, A. Garnier, F. Fierli, M. Ern, M. Streibel, S. Arabas, S. Borrmann, J.J. Berthelier, C. Blom, T. Christensen, F. D’Amato, G. Di Donfrancesco, T. Deshler, A. Diedhiou, G. Durry, O. Engelsen, F. Goutail, N.R.P. Harris, E.R.T. Kerstel, S. Khaykin, P. Konopka, A. Kylling, N. Larsen, T. Lebel, X. Liu, A.R. MacKenzie, J. Nielsen, A. Oulanowski, D.J. Parker, J. Pelon, J. Polcher, J.A. Pyle, F. Ravegnani, E.D. Rivière, A.D. Robinson, T. Röckmann, C. Schiller, F. Simões, L. Stefanutti, F. Stroh, L. Some, P. Siegmund, N. Sitnikov, J.P. Vernier, C.M. Volk, C. Voigt, M. von Hobe, S. Viciani, V. Yushkov, Atmos. Chem. Phys. Discuss. 9(5), 19713 (2009) ADSCrossRefGoogle Scholar
  60. 60.
    R.Q. Iannone, D. Romanini, O. Cattani, H.A.J. Meijer, E.R.T. Kerstel, J. Geophys. Res. 115(D10), 1 (2010). doi: 10.1029/2009JD012895. http://www.agu.org/pubs/crossref/2010/2009JD012895.shtml CrossRefGoogle Scholar
  61. 61.
    J. Ladsberg, E. Kerstel, D. Romanini, Appl. Phys. Lett. (2013 prepared for submission) Google Scholar
  62. 62.
    R. Wehr, S. Kassi, D. Romanini, L. Gianfrani, Appl. Phys. B, Lasers Opt. 92(3), 459 (2008). doi: 10.1007/s00340-008-3086-3. http://www.springerlink.com/index/10.1007/s00340-008-3086-3 ADSCrossRefGoogle Scholar
  63. 63.
    M. Durand, J. Morville, D. Romanini, Phys. Rev. A 82(3), 031803(R) (2010). doi: 10.1103/PhysRevA.82.031803. http://link.aps.org/doi/10.1103/PhysRevA.82.031803 ADSCrossRefGoogle Scholar
  64. 64.
    Y. Gong, B. Li, Appl. Opt. 47(21), 3860 (2008). http://www.ncbi.nlm.nih.gov/pubmed/18641755 ADSCrossRefGoogle Scholar
  65. 65.
    Z. Tong-Kai, Q. Zhe-Chao, H. Yan-Ling, L. Bin-Cheng, Chin. Phys. Lett. 27(10), 100701 (2010). doi: 10.1088/0256-307X/27/10/100701 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jérôme Morville
    • 1
    Email author
  • Daniele Romanini
    • 2
  • Erik Kerstel
    • 2
  1. 1.Institut Lumière Matière, UMR 5306, Université Lyon 1, CNRSUniversité de LyonVilleurbanne cedexFrance
  2. 2.Laboratoire Interdisciplinaire de Physique, UMR 5588Université J. Fourier (Grenoble I), CNRSSaint-Martin d’HèresFrance

Personalised recommendations