Skip to main content

Saturated-Absorption Cavity Ring-Down (SCAR) for High-Sensitivity and High-Resolution Molecular Spectroscopy in the Mid IR

  • Chapter

Part of the Springer Series in Optical Sciences book series (SSOS,volume 179)

Abstract

A non-conventional cavity ring-down spectroscopic technique is described. When the light intensity is well above the saturation level for the molecular species inside a high-finesse cavity, each single cavity ring-down event simultaneously measures both the background losses from the cavity mirrors and the linear absorption from the gas. Such a differential scheme acting on very short time scales (a few tens of microseconds) can improve the sensitivity of conventional cavity ring-down by more than one order of magnitude, while achieving sub-Doppler resolution, if needed. Applications to optical detection of very rare molecular species like radiocarbon dioxide and resolved molecular hyperfine structure in 17O12C16O are presented.

Keywords

  • Accelerator Mass Spectrometry
  • Cavity Loss
  • Optical Frequency Comb
  • Cavity Ring Down Spectroscopy
  • Cavity Ring Down

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Engeln, G. Helden, G. Berden, G. Meijer, Phase shift cavity ring down absorption spectroscopy. Chem. Phys. Lett. 262, 105–109 (1996)

    CrossRef  ADS  Google Scholar 

  2. D. Romanini, A.A. Kachanov, F. Stoeckel, Diode laser cavity ring down spectroscopy. Chem. Phys. Lett. 270, 538–545 (1997)

    CrossRef  ADS  Google Scholar 

  3. B.A. Paldus, J.J.S. Harris, J. Martin, J. Xie, R.N. Zare, Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization. J. Appl. Phys. 82, 3199 (1997)

    CrossRef  ADS  Google Scholar 

  4. D. Romanini, P. Dupre, R. Jost, Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2. Vib. Spectrosc. 19, 93 (1999)

    CrossRef  Google Scholar 

  5. C.R. Bucher, K.K. Lehmann, D.F. Plusquellic, G.T. Fraser, Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy. Appl. Opt. 39, 3154 (2000)

    CrossRef  ADS  Google Scholar 

  6. D. Lisak, J.T. Hodges, R. Ciuryło, Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy. Phys. Rev. A 73, 012507 (2006)

    CrossRef  ADS  Google Scholar 

  7. J.J. Scherer, D. Voelkel, D.J. Rakestraw, J.B. Paul, C.P. Collier, R.J. Saykally, A. O’Keefe, Infrared cavity ringdown laser-absorption spectroscopy (IR-CRLAS). Chem. Phys. Lett. 245, 273–280 (1995)

    CrossRef  ADS  Google Scholar 

  8. M. Muertz, B. Frech, W. Urban, High-resolution cavity leak-out absorption spectroscopy in the 10 μm region. Appl. Phys. B 69, 243–249 (1999)

    ADS  Google Scholar 

  9. Harvard-Smithsonian Center for Astrophysics, The HITRAN database (2009). http://www.cfa.harvard.edu/hitran

  10. D. Halmer, G. von Basum, P. Hering, M. Murtz, Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide. Opt. Lett. 30, 2314 (2005)

    CrossRef  ADS  Google Scholar 

  11. D. Mazzotti, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, P. De Natale, A comb-referenced difference frequency spectrometer for cavity ring-down spectroscopy in the 4.25-μm region. J. Opt. A 8, S490–S493 (2006)

    CrossRef  ADS  Google Scholar 

  12. I. Galli, P. Cancio, G. Di Lonardo, L. Fusina, G. Giusfredi, D. Mazzotti, F. Tamassia, P. De Natale, The ν 3 band of 14C16O2 molecule measured by optical-frequency-comb-assisted cavity ring-down spectroscopy. Mol. Phys. 109, 2267–2272 (2011)

    CrossRef  ADS  Google Scholar 

  13. D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J.A. Mitchell, L.W. Hollberg, Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers. Appl. Phys. B 70, 747–750 (2000)

    CrossRef  ADS  Google Scholar 

  14. P. Maddaloni, G. Gagliardi, P. Malara, P. De Natale, A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy. Appl. Phys. B 80, 141–145 (2005)

    CrossRef  ADS  Google Scholar 

  15. E.V. Kovalchuk, T. Schuldt, A. Peters, Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology. Opt. Lett. 30, 3141–3143 (2005)

    CrossRef  ADS  Google Scholar 

  16. I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Ultra-stable, widely tunable and absolutely linked mid-IR coherent source. Opt. Express 17, 9582–9587 (2009)

    CrossRef  ADS  Google Scholar 

  17. I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm. Opt. Lett. 35, 3616–3618 (2010)

    CrossRef  ADS  Google Scholar 

  18. S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, P. De Natale, Quantum cascade lasers for high-resolution spectroscopy. Opt. Eng. 49, 111122 (2010)

    CrossRef  ADS  Google Scholar 

  19. P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Gagliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, P. De Natale, Frequency-comb-referenced mid-IR sources for next-generation environmental sensors. Appl. Phys. B 102, 255–269 (2011)

    CrossRef  ADS  Google Scholar 

  20. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, P. De Natale, Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy. Opt. Express 20, 9178–9186 (2012)

    CrossRef  ADS  Google Scholar 

  21. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, P. De Natale, Saturated-absorption cavity ring-down spectroscopy. Phys. Rev. Lett. 104, 110801 (2010)

    CrossRef  ADS  Google Scholar 

  22. P. Maddaloni, P. Cancio, P. De Natale, Optical comb generators for laser frequency measurement. Meas. Sci. Technol. 20, 052001 (2009)

    CrossRef  ADS  Google Scholar 

  23. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107, 270802 (2011)

    CrossRef  Google Scholar 

  24. D. Romanini, A.A. Kachanov, E. Stoeckel, Cavity ringdown spectroscopy: broad band absolute absorption measurements. Chem. Phys. Lett. 270, 546–550 (1997)

    CrossRef  ADS  Google Scholar 

  25. J.Y. Lee, J.W. Hahn, Theoretical analysis on the dynamic absorption saturation in pulsed cavity ringdown spectroscopy. Appl. Phys. B 79, 653 (2004)

    CrossRef  ADS  Google Scholar 

  26. S.S. Brown, H. Stark, A.R. Ravishankara, Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3). Appl. Phys. B 75, 173 (2002)

    CrossRef  ADS  Google Scholar 

  27. W. Demtroder, Laser Spectroscopy. Advanced Texts in Physics (Springer, New York, 2003)

    CrossRef  Google Scholar 

  28. E.W. Weisstein, Gill’s method. From MathWorld—a Wolfram web resource. http://mathworld.wolfram.com/GillsMethod.html

  29. S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, L. Gianfrani, Frequency-comb-referenced quantum-cascade laser at 4.4 μm. Opt. Lett. 32, 988–990 (2007)

    CrossRef  ADS  Google Scholar 

  30. S. Borri, S. Bartalini, I. Galli, P. Cancio, G. Giusfredi, D. Mazzotti, A. Castrillo, L. Gianfrani, P. De Natale, Lamb-dip-locked quantum cascade laser for comb-referenced IR absolute frequency measurements. Opt. Express 16, 11637–11646 (2008)

    CrossRef  ADS  Google Scholar 

  31. S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, P. De Natale, Direct link of a mid-infrared QCL to a frequency comb by optical injection. Opt. Lett. 37, 1011–1013 (2012)

    CrossRef  ADS  Google Scholar 

  32. A.A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, M. Marangoni, Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb. Opt. Lett. 37, 4083–4085 (2012)

    CrossRef  ADS  Google Scholar 

  33. F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio, D. Mazzotti, A. Montori, N. Akikusa, M. Yamanishi, S. Bartalini, P. De Natale, Sub-kilohertz linewidth room-temperature mid-IR quantum cascade laser using a molecular sub-Doppler reference. Opt. Lett. 37, 4811 (2012)

    CrossRef  ADS  Google Scholar 

  34. I. Galli et al., Comb-assisted sub-kilohertz linewidth quantum cascade laser for high-precision mid-IR spectroscopy. Appl. Phys. Lett. 103, 12117 (2013). doi:10.1063/1.4799284

    Google Scholar 

  35. S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, F. Tamassia, Power-boosted difference frequency source for high-resolution infrared spectroscopy. Appl. Phys. B 76, 437–477 (2003)

    CrossRef  Google Scholar 

  36. D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi, P. De Natale, Low-power Lamb-dip spectroscopy of very weak CO2 transitions around 4.25 μm. Opt. Lett. 27, 1256–1258 (2002)

    CrossRef  ADS  Google Scholar 

  37. D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, M. Prevedelli, Frequency-comb-based absolute frequency measurements in the mid-IR with a difference-frequency spectrometer. Opt. Lett. 30, 997–999 (2005)

    CrossRef  ADS  Google Scholar 

  38. H.R. Telle, B. Lipphardt, J. Stenger, Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B 74, 1–6 (2002)

    CrossRef  ADS  Google Scholar 

  39. S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Frequency modulation spectroscopy by means of quantum-cascade lasers. Appl. Phys. B 85, 223–2229 (2006)

    CrossRef  ADS  Google Scholar 

  40. S. Bartalini, S. Borri, P. De Natale, Doppler-free polarization spectroscopy with a quantum cascade laser at 4.3 μm. Opt. Express 17, 7440–7449 (2009)

    CrossRef  Google Scholar 

  41. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q.J. Wang, F. Capasso, C. Kumar, N. Patel, 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Appl. Phys. Lett. 95, 141113 (2009)

    CrossRef  ADS  Google Scholar 

  42. S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit. Phys. Rev. Lett. 104, 083904 (2010)

    CrossRef  ADS  Google Scholar 

  43. S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Opt. Express 19, 17996–18003 (2011)

    CrossRef  ADS  Google Scholar 

  44. M.S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, M. Inguscio, P. De Natale, Quantum-limited frequency fluctuations in a terahertz laser. Nat. Photonics 6, 525–528 (2012)

    CrossRef  ADS  Google Scholar 

  45. S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, Frequency-noise dynamics of mid-infrared quantum cascade lasers. IEEE J. Quantum Electron. 47, 984–988 (2011)

    CrossRef  ADS  Google Scholar 

  46. J. Ye, L.-S. Ma, J.L. Hall, Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy. J. Opt. Soc. Am. B 15, 6 (1998)

    CrossRef  ADS  Google Scholar 

  47. J.B. McManus, J.H. Shorter, D.D. Nelson, M.S. Zahniser, D.E. Glenn, R.M. McGovern, Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Appl. Phys. B 92, 387 (2008)

    CrossRef  ADS  Google Scholar 

  48. J.E.J. Moyer et al., Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy. Appl. Phys. B 92, 467 (2008)

    CrossRef  ADS  Google Scholar 

  49. M. Sowa, M. Murtz, P. Hering, Mid-infrared laser spectroscopy for online analysis of exhaled CO. J. Breath Res. 4, 047101 (2010)

    CrossRef  ADS  Google Scholar 

  50. G. Maisons, P. Gorrotxategi Carbajo, M. Carras, D. Romanini, Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser. Opt. Lett. 35, 3607 (2010)

    CrossRef  ADS  Google Scholar 

  51. D.D. Arslanov, S.M. Cristescu, F.J.M. Harren, Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing. Opt. Lett. 35, 3300 (2010)

    CrossRef  ADS  Google Scholar 

  52. B.H. Lee et al., Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers. Appl. Phys. B 102, 417 (2011)

    CrossRef  ADS  Google Scholar 

  53. J.B. McManus, M.S. Zahniser, D.D. Nelson, Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number. Appl. Opt. 50, A74 (2011)

    CrossRef  ADS  Google Scholar 

  54. I. Galli, S. Bartalini, P. Cancio, P. De Natale, D. Mazzotti, G. Giusfredi, M.E. Fedi, P.A. Mando, Optical detection of radiocarbon dioxide: first results and AMS intercomparison. Radiocarbon 55(2–3), 213–223 (2013)

    Google Scholar 

  55. R.N. Zare, Analytical chemistry: ultrasensitive radiocarbon detection. Nature 482, 312–313 (2012)

    CrossRef  ADS  Google Scholar 

  56. D. Mazzotti, S. Bartalini, S. Borri, P. Cancio, I. Galli, G. Giusfredi, P. De Natale, All-optical radiocarbon dating. Opt. Photonics News 23(12), 52 (2012)

    CrossRef  ADS  Google Scholar 

  57. Ch. Daussy, T. Marrel, A. Amy-Klein, C.T. Nguyen, Ch.J. Bordé, Ch. Chardonnet, Limit on the parity nonconserving energy difference between the enantiomers of a chiral molecule by laser spectroscopy. Phys. Rev. Lett. 83, 1554 (1999)

    CrossRef  ADS  Google Scholar 

  58. D. Mazzotti, P. Cancio, G. Giusfredi, M. Inguscio, P. De Natale, Search for exchange-antisymmetric states for spin-0 particles at the 10−11 level. Phys. Rev. Lett. 86, 1919–1922 (2001)

    CrossRef  ADS  Google Scholar 

  59. A. Shelkovnikov, R.J. Butcher, C. Chardonnet, A. Amy-Klein, Stability of the proton-to-electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008)

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cancio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cancio, P., Galli, I., Bartalini, S., Giusfredi, G., Mazzotti, D., De Natale, P. (2014). Saturated-Absorption Cavity Ring-Down (SCAR) for High-Sensitivity and High-Resolution Molecular Spectroscopy in the Mid IR. In: Gagliardi, G., Loock, HP. (eds) Cavity-Enhanced Spectroscopy and Sensing. Springer Series in Optical Sciences, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40003-2_4

Download citation