Advertisement

Saturated-Absorption Cavity Ring-Down (SCAR) for High-Sensitivity and High-Resolution Molecular Spectroscopy in the Mid IR

  • P. CancioEmail author
  • I. Galli
  • S. Bartalini
  • G. Giusfredi
  • D. Mazzotti
  • P. De Natale
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 179)

Abstract

A non-conventional cavity ring-down spectroscopic technique is described. When the light intensity is well above the saturation level for the molecular species inside a high-finesse cavity, each single cavity ring-down event simultaneously measures both the background losses from the cavity mirrors and the linear absorption from the gas. Such a differential scheme acting on very short time scales (a few tens of microseconds) can improve the sensitivity of conventional cavity ring-down by more than one order of magnitude, while achieving sub-Doppler resolution, if needed. Applications to optical detection of very rare molecular species like radiocarbon dioxide and resolved molecular hyperfine structure in 17O12C16O are presented.

Keywords

Accelerator Mass Spectrometry Cavity Loss Optical Frequency Comb Cavity Ring Down Spectroscopy Cavity Ring Down 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Engeln, G. Helden, G. Berden, G. Meijer, Phase shift cavity ring down absorption spectroscopy. Chem. Phys. Lett. 262, 105–109 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    D. Romanini, A.A. Kachanov, F. Stoeckel, Diode laser cavity ring down spectroscopy. Chem. Phys. Lett. 270, 538–545 (1997) ADSCrossRefGoogle Scholar
  3. 3.
    B.A. Paldus, J.J.S. Harris, J. Martin, J. Xie, R.N. Zare, Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization. J. Appl. Phys. 82, 3199 (1997) ADSCrossRefGoogle Scholar
  4. 4.
    D. Romanini, P. Dupre, R. Jost, Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2. Vib. Spectrosc. 19, 93 (1999) CrossRefGoogle Scholar
  5. 5.
    C.R. Bucher, K.K. Lehmann, D.F. Plusquellic, G.T. Fraser, Doppler-free nonlinear absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy. Appl. Opt. 39, 3154 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    D. Lisak, J.T. Hodges, R. Ciuryło, Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy. Phys. Rev. A 73, 012507 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    J.J. Scherer, D. Voelkel, D.J. Rakestraw, J.B. Paul, C.P. Collier, R.J. Saykally, A. O’Keefe, Infrared cavity ringdown laser-absorption spectroscopy (IR-CRLAS). Chem. Phys. Lett. 245, 273–280 (1995) ADSCrossRefGoogle Scholar
  8. 8.
    M. Muertz, B. Frech, W. Urban, High-resolution cavity leak-out absorption spectroscopy in the 10 μm region. Appl. Phys. B 69, 243–249 (1999) ADSGoogle Scholar
  9. 9.
    Harvard-Smithsonian Center for Astrophysics, The HITRAN database (2009). http://www.cfa.harvard.edu/hitran
  10. 10.
    D. Halmer, G. von Basum, P. Hering, M. Murtz, Mid-infrared cavity leak-out spectroscopy for ultrasensitive detection of carbonyl sulfide. Opt. Lett. 30, 2314 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    D. Mazzotti, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, P. De Natale, A comb-referenced difference frequency spectrometer for cavity ring-down spectroscopy in the 4.25-μm region. J. Opt. A 8, S490–S493 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    I. Galli, P. Cancio, G. Di Lonardo, L. Fusina, G. Giusfredi, D. Mazzotti, F. Tamassia, P. De Natale, The ν 3 band of 14C16O2 molecule measured by optical-frequency-comb-assisted cavity ring-down spectroscopy. Mol. Phys. 109, 2267–2272 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    D. Mazzotti, P. De Natale, G. Giusfredi, C. Fort, J.A. Mitchell, L.W. Hollberg, Difference-frequency generation in PPLN at 4.25 μm: an analysis of sensitivity limits for DFG spectrometers. Appl. Phys. B 70, 747–750 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    P. Maddaloni, G. Gagliardi, P. Malara, P. De Natale, A 3.5-mW continuous-wave difference-frequency source around 3 μm for sub-Doppler molecular spectroscopy. Appl. Phys. B 80, 141–145 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    E.V. Kovalchuk, T. Schuldt, A. Peters, Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology. Opt. Lett. 30, 3141–3143 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    I. Galli, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Ultra-stable, widely tunable and absolutely linked mid-IR coherent source. Opt. Express 17, 9582–9587 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    I. Galli, S. Bartalini, S. Borri, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, Ti:sapphire laser intracavity difference-frequency generation of 30 mW cw radiation around 4.5 μm. Opt. Lett. 35, 3616–3618 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, P. De Natale, Quantum cascade lasers for high-resolution spectroscopy. Opt. Eng. 49, 111122 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    P. Cancio, S. Bartalini, S. Borri, I. Galli, G. Gagliardi, G. Giusfredi, P. Maddaloni, P. Malara, D. Mazzotti, P. De Natale, Frequency-comb-referenced mid-IR sources for next-generation environmental sensors. Appl. Phys. B 102, 255–269 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J.-J. Zondy, M. De Rosa, P. De Natale, Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy. Opt. Express 20, 9178–9186 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, P. De Natale, Saturated-absorption cavity ring-down spectroscopy. Phys. Rev. Lett. 104, 110801 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    P. Maddaloni, P. Cancio, P. De Natale, Optical comb generators for laser frequency measurement. Meas. Sci. Technol. 20, 052001 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107, 270802 (2011) CrossRefGoogle Scholar
  24. 24.
    D. Romanini, A.A. Kachanov, E. Stoeckel, Cavity ringdown spectroscopy: broad band absolute absorption measurements. Chem. Phys. Lett. 270, 546–550 (1997) ADSCrossRefGoogle Scholar
  25. 25.
    J.Y. Lee, J.W. Hahn, Theoretical analysis on the dynamic absorption saturation in pulsed cavity ringdown spectroscopy. Appl. Phys. B 79, 653 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    S.S. Brown, H. Stark, A.R. Ravishankara, Cavity ring-down spectroscopy for atmospheric trace gas detection: application to the nitrate radical (NO3). Appl. Phys. B 75, 173 (2002) ADSCrossRefGoogle Scholar
  27. 27.
    W. Demtroder, Laser Spectroscopy. Advanced Texts in Physics (Springer, New York, 2003) CrossRefGoogle Scholar
  28. 28.
    E.W. Weisstein, Gill’s method. From MathWorld—a Wolfram web resource. http://mathworld.wolfram.com/GillsMethod.html
  29. 29.
    S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, P. De Natale, S. Borri, I. Galli, T. Leveque, L. Gianfrani, Frequency-comb-referenced quantum-cascade laser at 4.4 μm. Opt. Lett. 32, 988–990 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    S. Borri, S. Bartalini, I. Galli, P. Cancio, G. Giusfredi, D. Mazzotti, A. Castrillo, L. Gianfrani, P. De Natale, Lamb-dip-locked quantum cascade laser for comb-referenced IR absolute frequency measurements. Opt. Express 16, 11637–11646 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    S. Borri, I. Galli, F. Cappelli, A. Bismuto, S. Bartalini, P. Cancio, G. Giusfredi, D. Mazzotti, J. Faist, P. De Natale, Direct link of a mid-infrared QCL to a frequency comb by optical injection. Opt. Lett. 37, 1011–1013 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Mills, D. Gatti, J. Jiang, C. Mohr, W. Mefford, L. Gianfrani, M. Fermann, I. Hartl, M. Marangoni, Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb. Opt. Lett. 37, 4083–4085 (2012) ADSCrossRefGoogle Scholar
  33. 33.
    F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio, D. Mazzotti, A. Montori, N. Akikusa, M. Yamanishi, S. Bartalini, P. De Natale, Sub-kilohertz linewidth room-temperature mid-IR quantum cascade laser using a molecular sub-Doppler reference. Opt. Lett. 37, 4811 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    I. Galli et al., Comb-assisted sub-kilohertz linewidth quantum cascade laser for high-precision mid-IR spectroscopy. Appl. Phys. Lett. 103, 12117 (2013). doi: 10.1063/1.4799284 Google Scholar
  35. 35.
    S. Borri, P. Cancio, P. De Natale, G. Giusfredi, D. Mazzotti, F. Tamassia, Power-boosted difference frequency source for high-resolution infrared spectroscopy. Appl. Phys. B 76, 437–477 (2003) CrossRefGoogle Scholar
  36. 36.
    D. Mazzotti, S. Borri, P. Cancio, G. Giusfredi, P. De Natale, Low-power Lamb-dip spectroscopy of very weak CO2 transitions around 4.25 μm. Opt. Lett. 27, 1256–1258 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    D. Mazzotti, P. Cancio, G. Giusfredi, P. De Natale, M. Prevedelli, Frequency-comb-based absolute frequency measurements in the mid-IR with a difference-frequency spectrometer. Opt. Lett. 30, 997–999 (2005) ADSCrossRefGoogle Scholar
  38. 38.
    H.R. Telle, B. Lipphardt, J. Stenger, Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. B 74, 1–6 (2002) ADSCrossRefGoogle Scholar
  39. 39.
    S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Frequency modulation spectroscopy by means of quantum-cascade lasers. Appl. Phys. B 85, 223–2229 (2006) ADSCrossRefGoogle Scholar
  40. 40.
    S. Bartalini, S. Borri, P. De Natale, Doppler-free polarization spectroscopy with a quantum cascade laser at 4.3 μm. Opt. Express 17, 7440–7449 (2009) CrossRefGoogle Scholar
  41. 41.
    A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q.J. Wang, F. Capasso, C. Kumar, N. Patel, 3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Appl. Phys. Lett. 95, 141113 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    S. Bartalini, S. Borri, P. Cancio, A. Castrillo, I. Galli, G. Giusfredi, D. Mazzotti, L. Gianfrani, P. De Natale, Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit. Phys. Rev. Lett. 104, 083904 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    S. Bartalini, S. Borri, I. Galli, G. Giusfredi, D. Mazzotti, T. Edamura, N. Akikusa, M. Yamanishi, P. De Natale, Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser. Opt. Express 19, 17996–18003 (2011) ADSCrossRefGoogle Scholar
  44. 44.
    M.S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, M. Inguscio, P. De Natale, Quantum-limited frequency fluctuations in a terahertz laser. Nat. Photonics 6, 525–528 (2012) ADSCrossRefGoogle Scholar
  45. 45.
    S. Borri, S. Bartalini, P. Cancio, I. Galli, G. Giusfredi, D. Mazzotti, M. Yamanishi, P. De Natale, Frequency-noise dynamics of mid-infrared quantum cascade lasers. IEEE J. Quantum Electron. 47, 984–988 (2011) ADSCrossRefGoogle Scholar
  46. 46.
    J. Ye, L.-S. Ma, J.L. Hall, Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy. J. Opt. Soc. Am. B 15, 6 (1998) ADSCrossRefGoogle Scholar
  47. 47.
    J.B. McManus, J.H. Shorter, D.D. Nelson, M.S. Zahniser, D.E. Glenn, R.M. McGovern, Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Appl. Phys. B 92, 387 (2008) ADSCrossRefGoogle Scholar
  48. 48.
    J.E.J. Moyer et al., Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy. Appl. Phys. B 92, 467 (2008) ADSCrossRefGoogle Scholar
  49. 49.
    M. Sowa, M. Murtz, P. Hering, Mid-infrared laser spectroscopy for online analysis of exhaled CO. J. Breath Res. 4, 047101 (2010) ADSCrossRefGoogle Scholar
  50. 50.
    G. Maisons, P. Gorrotxategi Carbajo, M. Carras, D. Romanini, Optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser. Opt. Lett. 35, 3607 (2010) ADSCrossRefGoogle Scholar
  51. 51.
    D.D. Arslanov, S.M. Cristescu, F.J.M. Harren, Optical parametric oscillator based off-axis integrated cavity output spectroscopy for rapid chemical sensing. Opt. Lett. 35, 3300 (2010) ADSCrossRefGoogle Scholar
  52. 52.
    B.H. Lee et al., Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers. Appl. Phys. B 102, 417 (2011) ADSCrossRefGoogle Scholar
  53. 53.
    J.B. McManus, M.S. Zahniser, D.D. Nelson, Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number. Appl. Opt. 50, A74 (2011) ADSCrossRefGoogle Scholar
  54. 54.
    I. Galli, S. Bartalini, P. Cancio, P. De Natale, D. Mazzotti, G. Giusfredi, M.E. Fedi, P.A. Mando, Optical detection of radiocarbon dioxide: first results and AMS intercomparison. Radiocarbon 55(2–3), 213–223 (2013) Google Scholar
  55. 55.
    R.N. Zare, Analytical chemistry: ultrasensitive radiocarbon detection. Nature 482, 312–313 (2012) ADSCrossRefGoogle Scholar
  56. 56.
    D. Mazzotti, S. Bartalini, S. Borri, P. Cancio, I. Galli, G. Giusfredi, P. De Natale, All-optical radiocarbon dating. Opt. Photonics News 23(12), 52 (2012) ADSCrossRefGoogle Scholar
  57. 57.
    Ch. Daussy, T. Marrel, A. Amy-Klein, C.T. Nguyen, Ch.J. Bordé, Ch. Chardonnet, Limit on the parity nonconserving energy difference between the enantiomers of a chiral molecule by laser spectroscopy. Phys. Rev. Lett. 83, 1554 (1999) ADSCrossRefGoogle Scholar
  58. 58.
    D. Mazzotti, P. Cancio, G. Giusfredi, M. Inguscio, P. De Natale, Search for exchange-antisymmetric states for spin-0 particles at the 10−11 level. Phys. Rev. Lett. 86, 1919–1922 (2001) ADSCrossRefGoogle Scholar
  59. 59.
    A. Shelkovnikov, R.J. Butcher, C. Chardonnet, A. Amy-Klein, Stability of the proton-to-electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Cancio
    • 1
    Email author
  • I. Galli
    • 1
  • S. Bartalini
    • 1
  • G. Giusfredi
    • 1
  • D. Mazzotti
    • 1
  • P. De Natale
    • 1
  1. 1.Istituto Nazionale di OtticaConsiglio Nazionale delle RicercheSesto FiorentinoItaly

Personalised recommendations