Advertisement

Broadband Cavity-Enhanced Absorption Spectroscopy with Incoherent Light

  • A. A. RuthEmail author
  • S. Dixneuf
  • R. Raghunandan
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 179)

Abstract

Although broadband incoherent light does not efficiently couple into a high-finesse optical cavity, its transmission is readily detectable and enables applications in cavity-enhanced absorption spectroscopy in the gas phase, liquid phase and on surfaces. This chapter gives an overview of measurement principles and experimental approaches implementing incoherent light sources in cavity-enhanced spectroscopic applications. The general principles of broadband CEAS are outlined and general “pros and cons” discussed, detailing aspects like cavity mirror reflectivity calibration or the establishment of detection limits. Different approaches concerning light sources, cavity design and detection schemes are discussed and a comprehensive overview of the current literature based on a methodological classification scheme is also presented.

Keywords

Mirror Reflectivity Frequency Comb Wavelength Selection Integrate Cavity Output Spectroscopy Supercontinuum Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge support by Science Foundation Ireland (11/RFP.1/PHY/3233), by the European Marie Curie Programme (FP7 IEF-302109, Alma Mater), and the IRCSET INSPIRE post-doc fellowship scheme cofounded by the FP7 Marie Curie programme (COFUND).

References

  1. 1.
    T. Gherman, D. Romanini, Mode-locked cavity-enhanced absorption spectroscopy. Opt. Express 10, 1033–1042 (2002) ADSGoogle Scholar
  2. 2.
    A. O’Keefe, Integrated cavity output analysis of ultra-weak absorption. Chem. Phys. Lett. 293, 331–336 (1998) ADSGoogle Scholar
  3. 3.
    K.K. Lehmann, D. Romanini, The superposition principle and cavity ring-down spectroscopy. J. Chem. Phys. 105, 10263–10277 (1996) ADSGoogle Scholar
  4. 4.
    S.M. Ball, R.L. Jones, Broad-band cavity ring-down spectroscopy. Chem. Rev. 103, 5239–5262 (2003) Google Scholar
  5. 5.
    S. Ball, R. Jones, Broadband cavity ring-down spectroscopy, in Cavity Ring Down Spectroscopy: Techniques and Applications, ed. by G. Berden, R. Engeln (Wiley, New York, 2009). ISBN: 978-1-4051-7688-0 Google Scholar
  6. 6.
    S.M. Ball, I.M. Povey, E.G. Norton, R.L. Jones, Broadband cavity ring-down spectroscopy of the NO3 radical. Chem. Phys. Lett. 342, 113–120 (2001) ADSGoogle Scholar
  7. 7.
    E. Hamers, D. Schram, R. Engeln, Fourier transform phase shift cavity ring down spectroscopy. Chem. Phys. Lett. 365, 237–243 (2002) ADSGoogle Scholar
  8. 8.
    S.E. Fiedler, A. Hese, A.A. Ruth, Incoherent broad-band cavity-enhanced absorption spectroscopy. Chem. Phys. Lett. 371, 284–294 (2003) ADSGoogle Scholar
  9. 9.
    A. O’Keefe, D.A.G. Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2554 (1988) ADSGoogle Scholar
  10. 10.
    J.J. Scherer, J.B. Paul, H. Jiao, A. O’Keefe, Broadband ringdown spectral photography. Appl. Opt. 40, 6725–6732 (2001) ADSGoogle Scholar
  11. 11.
    I.M. Povey, A.M. South, A. t’Kint de Roodenbeke, C. Hill, R.A. Freshwater, R.L. Jones, A broadband lidar for the measurement of tropospheric constituent profiles from the ground. J. Geophys. Res. 103, 3369–3380 (1998) ADSGoogle Scholar
  12. 12.
    M. Bitter, S.M. Ball, I.M. Povey, R.L. Jones, A broadband cavity ringdown spectrometer for in-situ measurements of atmospheric trace gases. Atmos. Chem. Phys. 5, 2547–2560 (2005) ADSGoogle Scholar
  13. 13.
    A. Saiz-Lopez et al., Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation. Atmos. Chem. Phys. 6, 883–895 (2006) ADSGoogle Scholar
  14. 14.
    R.J. Leigh et al., Measurements and modelling of molecular iodine emissions, transport and photodestruction in the coastal region around Roscoff. Atmos. Chem. Phys. 10, 11823–11838 (2010) ADSGoogle Scholar
  15. 15.
    G. Schmidl, W. Paa, W. Triebel, S. Schippel, H. Heyer, Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source. Appl. Opt. 48, 6754–6759 (2009) ADSGoogle Scholar
  16. 16.
    K. Stelmaszczyk, M. Fechner, P. Rohwetter, M. Queißer, A. Czyżewski, T. Stacewicz, L. Wöste, Towards supercontinuum cavity ring-down spectroscopy. Appl. Phys. B 94, 369–373 (2009) ADSGoogle Scholar
  17. 17.
    K. Stelmaszczyk, P. Rohwetter, M. Fechner, M. Queißer, A. Czyżewski, T. Stacewicz, L. Wöste, Cavity ring-down absorption spectrography based on filament-generated supercontinuum light. Opt. Express 17, 3673–3678 (2009) ADSGoogle Scholar
  18. 18.
    S.S. Kiwanuka, T.K. Laurila, J.H. Frank, A. Esposito, K. Blomberg von der Geest, L. Pancheri, D. Stoppa, C.F. Kaminski, Development of broadband cavity ring-down spectroscopy for biomedical diagnostics of liquid analytes. Anal. Chem. 84, 5489–5493 (2012) Google Scholar
  19. 19.
    J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Ueunten, D.S. Urevig, D.J. Spencer, D.J. Benard, Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method. Appl. Opt. 19, 144–147 (1980) ADSGoogle Scholar
  20. 20.
    R. Engeln, G. von Helden, G. Berden, G. Meijer, Phase shift cavity ring down absorption spectroscopy. Chem. Phys. Lett. 262, 105–109 (1996) ADSGoogle Scholar
  21. 21.
    S.E. Fiedler, A. Hese, A.A. Ruth, Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids. Rev. Sci. Instrum. 76, 023107 (2005) [Erratum: Rev. Sci. Instrum. 76, 089901 (2005)] ADSGoogle Scholar
  22. 22.
    S.E. Fiedler, A. Hese, U. Heitmann, Influence of the cavity parameters on the output intensity in incoherent broadband cavity-enhanced absorption spectroscopy. Rev. Sci. Instrum. 78, 073104 (2007) ADSGoogle Scholar
  23. 23.
    J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, J. Hult, Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source. Opt. Express 16, 10178–10188 (2008) ADSGoogle Scholar
  24. 24.
    M. Schnippering, P.R. Unwin, J. Hult, T. Laurila, C.F. Kaminski, J.M. Langridge, R.L. Jones, M. Mazurenka, S.R. Mackenzie, Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: a new probe of electrochemical processes. Electrochem. Commun. 10, 1827–1830 (2008) Google Scholar
  25. 25.
    K. Lynch, Incoherent broad-band cavity-enhanced total internal reflection spectroscopy of surface-adsorbed metallo-porphyrins, Ph.D. thesis, Physics Department, University College, Cork, Ireland, 2008 Google Scholar
  26. 26.
    A.A. Ruth, J. Orphal, S.E. Fiedler, Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source. Appl. Opt. 46, 3611–3616 (2007) ADSGoogle Scholar
  27. 27.
    M. Islam, L.N. Seetohul, Z. Ali, Liquid-phase broadband cavity-enhanced absorption spectroscopy measurements in a 2 mm cuvette. Appl. Spectrosc. 61, 649–658 (2007) ADSGoogle Scholar
  28. 28.
    L.N. Seetohul, Z. Ali, M. Islam, Broadband cavity enhanced absorption spectroscopy as a detector for HPLC. Anal. Chem. 81, 4106–4112 (2009) Google Scholar
  29. 29.
    S.S. Kiwanuka, T. Laurila, C.F. Kaminski, Sensitive method for the kinetic measurement of trace species in liquids using cavity enhanced absorption spectroscopy with broad bandwidth supercontinuum radiation. Anal. Chem. 82, 7498–7501 (2010) Google Scholar
  30. 30.
    A.A. Ruth, K.T. Lynch, Incoherent broadband cavity-enhanced total internal reflection spectroscopy of surface adsorbed metalloporphyrins. Phys. Chem. Chem. Phys. 10, 7098–7108 (2008) Google Scholar
  31. 31.
    L. Van der Sneppen, G. Hancock, C. Kaminski, T. Laurila, S.R. Mackenzie, S.R.T. Neil, R. Peverall, G.A.D. Ritchie, M. Schnippering, P.R. Unwin, Following interfacial kinetics in real time using broadband evanescent wave cavity-enhanced absorption spectroscopy: a comparison of light-emitting diodes and supercontinuum sources. Analyst 135, 133–139 (2010) ADSGoogle Scholar
  32. 32.
    A.T.M. Wilbers, G.M.W. Kroesen, C.J. Timmermans, D.C. Schram, The continuum emission of an arc plasma. J. Quant. Spectrosc. Radiat. Transf. 45, 1–10 (1991) ADSGoogle Scholar
  33. 33.
    R.M. Varma, D.S. Venables, A.A. Ruth, U. Heitmann, E. Schlosser, S. Dixneuf, Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction. Appl. Opt. 48, B159–171 (2009) ADSGoogle Scholar
  34. 34.
    B. Welz, H. Becker-Ross, S. Florek, U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to do Atomic Absorption Spectrometry (Wiley-VCH, New York, 2005) Google Scholar
  35. 35.
    J. Orphal, A.A. Ruth, High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source. Opt. Express 16, 19232–19243 (2008) ADSGoogle Scholar
  36. 36.
    U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy: Principles and Applications (Springer, Berlin, 2008) Google Scholar
  37. 37.
    S.E. Fiedler, G. Hoheisel, A.A. Ruth, A. Hese, Incoherent broad-band cavity-enhanced absorption spectroscopy of azulene in a supersonic jet. Chem. Phys. Lett. 382, 447–453 (2003) ADSGoogle Scholar
  38. 38.
    D.S. Venables, T. Gherman, J. Orphal, J.C. Wenger, A.A. Ruth, High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy. Environ. Sci. Technol. 40, 6758–6763 (2006) ADSGoogle Scholar
  39. 39.
    S. Vaughan, T. Gherman, A.A. Ruth, J. Orphal, Incoherent broad-band cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO and OIO. Phys. Chem. Chem. Phys. 10, 4471–4477 (2008) Google Scholar
  40. 40.
    R.A. Washenfelder, A.O. Langford, H. Fuchs, S.S. Brown, Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer. Atmos. Chem. Phys. 8, 7779–7793 (2008) ADSGoogle Scholar
  41. 41.
    S. Dixneuf, A.A. Ruth, S. Vaughan, R.M. Varma, J. Orphal, The time dependence of molecular iodine emission from Laminaria digitata. Atmos. Chem. Phys. 9, 823–829 (2009) ADSGoogle Scholar
  42. 42.
    U. Nitschke, A.A. Ruth, S. Dixneuf, D.B. Stengel, Molecular iodine emission rates and photosynthetic performance of different thallus parts of Laminaria digitata (Phaeophyceae) during emersion. Planta 233, 737–748 (2011) Google Scholar
  43. 43.
    J. Chen, D.S. Venables, A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases. Atmos. Meas. Tech. 4, 425–436 (2011) Google Scholar
  44. 44.
    J. Chen, J.C. Wenger, D.S. Venables, Near-ultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity. J. Phys. Chem. A 115, 12235–12242 (2011) Google Scholar
  45. 45.
    A. Walsh, D. Zhao, H. Linnartz, Cavity enhanced plasma self-absorption spectroscopy. Appl. Phys. Lett. 101, 091111 (2012) ADSGoogle Scholar
  46. 46.
    J.E. Thompson, H.D. Spangler, Tungsten source integrated cavity output spectroscopy for the determination of ambient atmospheric extinction coefficient. Appl. Opt. 45, 2465–2473 (2006) ADSGoogle Scholar
  47. 47.
    C. Kern, S. Trick, B. Rippel, U. Platt, Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements. Appl. Opt. 45, 2077–2088 (2006) ADSGoogle Scholar
  48. 48.
    S.M. Ball, J.M. Langridge, R.L. Jones, Broadband cavity enhanced absorption spectroscopy using light emitting diodes. Chem. Phys. Lett. 398, 68–74 (2004) ADSGoogle Scholar
  49. 49.
    I. Ventrillard-Courtillot, E. Sciamma O’Brien, S. Kassi, G. Méjean, D. Romanini, Incoherent broad-band cavity-enhanced absorption spectroscopy for simultaneous trace measurements of NO2 and NO3 with a LED source. Appl. Phys. B 101, 661–669 (2010) ADSGoogle Scholar
  50. 50.
    J.M. Langridge, S.M. Ball, R.L. Jones, A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes. Analyst 131, 916–922 (2006) ADSGoogle Scholar
  51. 51.
    M. Triki, P. Cermak, G. Méjean, D. Romanini, Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis. Appl. Phys. B 91, 195–201 (2008) ADSGoogle Scholar
  52. 52.
    T. Wu, W. Zhao, W. Chen, W. Zhang, X. Gao, Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode. Appl. Phys. B 94, 85–94 (2009) ADSGoogle Scholar
  53. 53.
    S.M. Ball, A.M. Hollingsworth, J. Humbles, C. Leblanc, P. Potin, G. McFiggans, Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed. Atmos. Chem. Phys. 10, 6237–6254 (2010) ADSGoogle Scholar
  54. 54.
    A.K. Benton, J.M. Langridge, S.M. Ball, W.J. Bloss, M. Dall’Osto, E. Nemitz, R.M. Harrison, R.L. Jones, Night-time chemistry above London: measurements of NO3 and N2O5 from the BT tower. Atmos. Chem. Phys. 10, 9781–9795 (2010) ADSGoogle Scholar
  55. 55.
    U. Platt, J. Meinen, D. Pöhler, T. Leisner, Broadband cavity enhanced differential optical absorption spectroscopy (CE-DOAS)—applicability and corrections. Atmos. Meas. Tech. 2, 713–723 (2009) Google Scholar
  56. 56.
    R. Thalman, R. Volkamer, Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode. Atmos. Meas. Tech. 3, 1797–1814 (2010) Google Scholar
  57. 57.
    J. Meinen, J. Thieser, U. Platt, T. Leisner, Technical note: using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS. Atmos. Chem. Phys. 10, 3901–3914 (2010) ADSGoogle Scholar
  58. 58.
    D.J. Hoch, J. Buxmann, H. Sihler, D. Pöhler, C. Zetzsch, U. Platt, A cavity-enhanced differential optical absorption spectroscopy instrument for measurement of BrO, HCHO, HONO and O3. Atmos. Meas. Tech. Discuss. 5, 3079–3115 (2012) Google Scholar
  59. 59.
    T. Gherman, D.S. Venables, S. Vaughan, J. Orphal, A.A. Ruth, Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2. Environ. Sci. Technol. 42, 890–895 (2008) ADSGoogle Scholar
  60. 60.
    J.M. Roberts, P. Veres, C. Warneke, J.A. Neuman, R.A. Washenfelder, S.S. Brown, M. Baasandorj, J.B. Burkholder, I.R. Burling, T.J. Johnson, R.J. Yokelson, J. de Gouw, Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions. Atmos. Meas. Tech. Discuss. 3, 301–331 (2010) ADSGoogle Scholar
  61. 61.
    T. Wu, W. Chen, E. Fertein, F. Cazier, D. Dewaele, X. Gao, Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air. Appl. Phys. B 106, 501–509 (2012) ADSGoogle Scholar
  62. 62.
    L.N. Seetohul, Z. Ali, M. Islam, Liquid-phase broadband cavity enhanced absorption spectroscopy (BBCEAS) studies in a 20 cm cell. Analyst 134, 1887–1895 (2009) ADSGoogle Scholar
  63. 63.
    P.L. Kebabian, S.C. Herndon, A. Freedman, Detection of nitrogen dioxide by cavity attenuated phase shift spectroscopy. Anal. Chem. 77, 724–728 (2005) Google Scholar
  64. 64.
    P.L. Kebabian, E.C. Wood, S.C. Herndon, A. Freedman, A practical alternative to chemiluminescence-based detection of nitrogen dioxide: cavity attenuated phase shift spectroscopy. Environ. Sci. Technol. 42, 6040–6045 (2008) ADSGoogle Scholar
  65. 65.
    A.L. Gomez, R.F. Renzi, J.A. Fruetel, R.P. Bambha, Integrated fiber optic incoherent broadband cavity enhanced absorption spectroscopy detector for near-IR absorption measurements of nanoliter samples. Appl. Opt. 51, 2532–2540 (2012) ADSGoogle Scholar
  66. 66.
    W. Denzer, M.L. Hamilton, G. Hancock, M. Islam, C.E. Langley, R. Peverall, G.A.D. Ritchie, Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode. Analyst 134, 2220–2223 (2009) ADSGoogle Scholar
  67. 67.
    W. Denzer, G. Hancock, M. Islam, C.E. Langley, R. Peverall, G.A.D. Ritchie, D. Taylor, Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: initial studies on potential breath analytes. Analyst 136, 801–806 (2011) [Erratum: Analyst 136, 5308 (2011)] ADSGoogle Scholar
  68. 68.
    C. Petermann, P. Fischer, Actively coupled cavity ringdown spectroscopy with low-power broadband sources. Opt. Express 19, 10164–10173 (2011) ADSGoogle Scholar
  69. 69.
    J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006) ADSGoogle Scholar
  70. 70.
    D.M. O’Leary, A.A. Ruth, S. Dixneuf, J. Orphal, R. Varma, The near infrared cavity-enhanced absorption spectrum of methylcyanide. J. Quant. Spectrosc. Radiat. Transf. 113, 1138–1147 (2012) ADSGoogle Scholar
  71. 71.
    A. Czyżewski, S. Chudzyński, K. Ernst, G. Karasiński, Ł. Kilianek, A. Pietruczuk, W. Skubiszak, T. Stacewicz, K. Stelmaszczyk, B. Koch, P. Rairoux, Cavity ring-down spectrography. Opt. Commun. 191, 271–275 (2001) ADSGoogle Scholar
  72. 72.
    J.J. Scherer, J.B. Paul, H. Jiao, A. O’Keefe, Broadband ringdown spectral photography. Appl. Opt. 40, 6725–6732 (2001) ADSGoogle Scholar
  73. 73.
    R. Engeln, G. Meijer, A Fourier transform cavity ring down spectrometer. Rev. Sci. Instrum. 67, 2708–2714 (1996) ADSGoogle Scholar
  74. 74.
    E.R. Crosson, P. Haar, G.A. Marcus, H.A. Schwettman, B.A. Paldus, T.G. Spence, R.N. Zare, Pulse-stacked cavity ring-down spectroscopy. Rev. Sci. Instrum. 70, 4–10 (1999) ADSGoogle Scholar
  75. 75.
    A. Walsh, D. Zhao, W. Ubachs, H. Linnartz, Optomechanical shutter modulated broad-band cavity-enhanced absorption spectroscopy of molecular transients of astrophysical interest. J. Phys. Chem. A (2012). doi: 10.1021/jp310392n Google Scholar
  76. 76.
    S.R.T. Neil, C.M. Rushworth, C. Vallance, S.R. Mackenzie, Broadband cavity-enhanced absorption spectroscopy for real time, in situ spectral analysis of microfluidic droplets. Lab Chip 11, 3953–3955 (2011) Google Scholar
  77. 77.
    P.S. Johnston, K.K. Lehmann, Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source. Opt. Express 16, 15013–15023 (2008) ADSGoogle Scholar
  78. 78.
    K.K. Lehmann, P.S. Johnston, P. Rabinowitz, Brewster angle prism retroreflectors for cavity enhanced spectroscopy. Appl. Opt. 48, 2966–2978 (2009) ADSGoogle Scholar
  79. 79.
    M. Schnippering, S.R.T. Neil, S.R. Mackenzie, P.R. Unwin, Evanescent wave cavity-based spectroscopic techniques as probes of interfacial processes. Chem. Soc. Rev. 40, 207–220 (2011) Google Scholar
  80. 80.
    Y. Yao, J. Yao, V.K. Narasimhan, Z. Ruan, C. Xie, S. Fan, Y. Cui, Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat. Commun. 664 (2012). doi: 10.1038/ncomms1664
  81. 81.
    E.R. Ashu-Ayem, U. Nitschke, C. Monahan, J. Chen, S.B. Darby, P.D. Smith, C.D. O’Dowd, D.B. Stengel, D.S. Venables, Coastal iodine emissions. 1. Release of I2 by Laminaria digitata in chamber experiments. Environ. Sci. Technol. 46, 10413–10421 (2012) ADSGoogle Scholar
  82. 82.
    J.M. Langridge, S.M. Ball, A.J.L. Shillings, R.L. Jones, A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection. Rev. Sci. Instrum. 79, 123110 (2008) ADSGoogle Scholar
  83. 83.
    O.J. Kennedy et al., An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2. Atmos. Meas. Tech. 4, 1759–1776 (2011) Google Scholar
  84. 84.
    H. Fuchs et al., Intercomparison of measurements of NO2 concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign. Atmos. Meas. Tech. 3, 21–37 (2010) Google Scholar
  85. 85.
    H.P. Dorn et al., Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR. Atmos. Meas. Tech. Discuss. 6, 303–379 (2013) Google Scholar
  86. 86.
    C. Monahan, E.R. Ashu-Ayem, U. Nitschke, S.B. Darby, P.D. Smith, D.B. Stengel, D.S. Venables, C.D. O’Dowd, Coastal iodine emissions, part 2: chamber experiments of particle formation from Laminaria digitata-derived and laboratory-generated I2. Environ. Sci. Technol. 46, 10422–10428 (2012) ADSGoogle Scholar
  87. 87.
    R.S. Watt, T. Laurila, C.F. Kaminski, J. Hult, Cavity enhanced spectroscopy of high-temperature H2O in the near-infrared using a supercontinuum light source. Appl. Spectrosc. 63, 1389–1395 (2009) ADSGoogle Scholar
  88. 88.
    T. Laurila, I.S. Burns, J. Hult, J.H. Miller, C.F. Kaminski, A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation. Appl. Phys. B 102, 271–278 (2011) ADSGoogle Scholar
  89. 89.
    J.L. Axson, R.A. Washenfelder, T.F. Kahan, C.J. Young, V. Vaida, S.S. Brown, Absolute ozone cross section in the Huggins Chappuis minimum (350–470 nm) at 296 K. Atmos. Chem. Phys. 11, 11581–11590 (2011) ADSGoogle Scholar
  90. 90.
    M.J. Down, J. Tennyson, J. Orphal, P. Chelin, A.A. Ruth, Analysis of an 18O and D enhanced water spectrum and new assignments for HD18O and \(\mathrm {D}_{2}^{18}\mathrm{O}\) in the near-infrared region (6000–7000 cm−1) using newly calculated variational line lists. J. Mol. Spectrosc. 282, 1–8 (2012) ADSGoogle Scholar
  91. 91.
    C.E. Miller, L.R. Brown, Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions. J. Mol. Spectrosc. 228, 329–354 (2004) ADSGoogle Scholar
  92. 92.
    B. Ouyang, R.L. Jones, Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression. Appl. Phys. B 109, 581–591 (2012) ADSGoogle Scholar
  93. 93.
    T. Gherman, S. Kassi, A. Campargue, D. Romanini, Overtone spectroscopy in the blue region by cavity-enhanced absorption spectroscopy with a mode-locked femtosecond laser: application to acetylene. Chem. Phys. Lett. 383, 353–358 (2004) ADSGoogle Scholar
  94. 94.
    T. Gherman, D. Romanini, I. Sagnes, A. Garnache, Z. Zhang, Cavity-enhanced absorption spectroscopy with a mode-locked diode-pumped vertical external-cavity surface-emitting laser. Chem. Phys. Lett. 390, 290–295 (2004) ADSGoogle Scholar
  95. 95.
    J. Morville, S. Kassi, M. Chenevier, D. Romanini, Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking. Appl. Phys. B 80, 1027–1038 (2005) ADSGoogle Scholar
  96. 96.
    M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006) ADSGoogle Scholar
  97. 97.
    M.J. Thorpe, F. Adler, K.C. Cossel, M.H.G. de Miranda, J. Ye, Tomography of a supersonically cooled molecular jet using cavity-enhanced direct frequency comb spectroscopy. Chem. Phys. Lett. 468, 1–8 (2009) ADSGoogle Scholar
  98. 98.
    K.C. Cossel, F. Adler, K.A. Bertness, M.J. Thorpe, J. Feng, M.W. Raynor, J. Ye, Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B, Lasers Opt. 100, 917–924 (2010) ADSGoogle Scholar
  99. 99.
    A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K.C. Cossel, T.C. Briles, J. Ye, Optical frequency comb spectroscopy. Faraday Discuss. 150, 23–31 (2011) ADSGoogle Scholar
  100. 100.
    C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hänsch, Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99, 263902 (2007) ADSGoogle Scholar
  101. 101.
    B. Hardy, M. Raybaut, J.B. Dherbecourt, J.M. Melkonian, A. Godard, A.K. Mohamed, M. Lefebvre, Vernier frequency sampling: a new tuning approach in spectroscopy—application to multi-wavelength integrated path DIAL. Appl. Phys. B 107, 643–647 (2012) ADSGoogle Scholar
  102. 102.
    P.K. Dasgupta, J.-S. Rhee, Optical cells with partially reflecting windows as nonlinear absorbance amplifiers. Anal. Chem. 59, 783–786 (1987) Google Scholar
  103. 103.
    J.M. Langridge, R.J. Gustafsson, P.T. Griffiths, R.A. Cox, R.M. Lambert, R.L. Jones, Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: a concern for air quality in urban areas? Atmos. Environ. 43, 5128–5131 (2009) ADSGoogle Scholar
  104. 104.
    S. Nakao, Y. Liu, P. Tang, C.-L. Chen, J. Zhang, D.R. Cocker, Chamber studies of SOA formation from aromatic hydrocarbons: observation of limited glyoxal uptake. Atmos. Chem. Phys. 12, 3927–3937 (2012) ADSGoogle Scholar
  105. 105.
    W. Zhao, M. Dong, W. Chen, X. Gu, C. Hu, X. Gao, W. Huang, W. Zhang, Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445–480 nm. Anal. Chem. 85, 2260–2268 (2013) Google Scholar
  106. 106.
    P.L. Kebabian, W.A. Robinson, A. Freedman, Optical extinction monitor using CW cavity enhanced detection. Rev. Sci. Instrum. 78, 063102 (2007) ADSGoogle Scholar
  107. 107.
    L. Biennier, F. Salama, M. Gupta, A. O’Keefe, Multiplex integrated cavity output spectroscopy of cold PAH cations. Chem. Phys. Lett. 387, 287–294 (2004) ADSGoogle Scholar
  108. 108.
    A. Czyżewski, K. Ernst, G. Karasinski, H. Lange, P. Rairoux, W. Skubiszak, T. Stacewicz, Cavity ring-down spectroscopy for trace gas analysis. Acta Phys. Pol. B 33, 2255–2265 (2002) ADSGoogle Scholar
  109. 109.
    A.J.L. Shillings, S.M. Ball, M.J. Barber, J. Tennyson, R.L. Jones, An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list. Atmos. Chem. Phys. 11, 4273–4287 (2011) ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Physics Department & Environmental Research InstituteUniversity College CorkCorkIreland

Personalised recommendations