Fiber-Optic Resonators for Strain-Acoustic Sensing and Chemical Spectroscopy

  • Saverio AvinoEmail author
  • Antonio Giorgini
  • Paolo De Natale
  • Hans-Peter Loock
  • Gianluca Gagliardi
Part of the Springer Series in Optical Sciences book series (SSOS, volume 179)


Over the past several years, fiber-optic resonators have been used as mechanical probes by virtue of their intrinsic sensitivity to length changes, and chemical sensors based on sensitivity to molecular absorption or refractive index changes. The capabilities of high-finesse fiber Bragg-grating cavities for quasi-static and dynamic strain sensing are discussed. Pound-Drever-Hall (PDH) frequency locking techniques are considered for low-noise, fast and wide dynamic range active interrogation. Such methods can ultimately be used in combination with highly-stabilized laser sources or optical frequency combs (OFCs) which would provide both an exotic coherent radiation source and an ultra-stable optical reference at the same time. The implementation of similar systems for applications to seismic monitoring and acoustic pickup for musical instruments are described. Also, we describe detection schemes for chemical sensing and evanescent-wave spectroscopy using fiber-ring resonators, for which we propose lasers as well as supercontinuum comb generators as light sources.


Fiber Bragg Grating Cavity Mode Optical Frequency Comb Fiber Loop Fiber Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.J. Richardson, Filling the light pipe. Science 330, 327–328 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    A.D. Kersey, A review of recent developments in fiber optic sensor technology. Opt. Fiber Technol. 2, 291–317 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    F.T.S. Yu, S. Yin (eds.), Fiber Optic Sensors (Marcel Dekker, New York, 2002), p. 449 Google Scholar
  4. 4.
    Y.J. Rao, In-fibre Bragg grating sensors. Meas. Sci. Technol. 8, 355–375 (1997) ADSCrossRefGoogle Scholar
  5. 5.
    G. Gagliardi et al., Optical-fiber sensing based on reflection laser spectroscopy. Sensors 10, 1823–1845 (2010) CrossRefGoogle Scholar
  6. 6.
    H.-P. Loock et al., Absorption detection using optical waveguide cavities. Can. J. Chem. 88, 401–410 (2010) CrossRefGoogle Scholar
  7. 7.
    J. Ye, H. Schnatz, L.W. Hollberg, Optical frequency combs: from precision frequency metrology to optical phase control. IEEE J. Sel. Top. Quantum Electron. 9, 1041–1058 (2003) CrossRefGoogle Scholar
  8. 8.
    S.T. Cundiff, Y.J. Colloquium, Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    S.A. Diddams, L. Hollberg, V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007) CrossRefGoogle Scholar
  10. 10.
    M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1595 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    R. Grilli, G. Mèjean, C. AbdAlrahman, I. Ventrillard, S. Kassi, D. Romanini, Phys. Rev. A 85, 051804(R) (2012) ADSCrossRefGoogle Scholar
  12. 12.
    L.F. Stokes, M. Chodorow, H.J. Shaw, All-single-mode fiber resonator. Opt. Lett. 7, 288–290 (1982) ADSCrossRefGoogle Scholar
  13. 13.
    R.W. Drever et al., Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983) ADSCrossRefGoogle Scholar
  14. 14.
    E.D. Black, An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    G. Gagliardi, M. Salza, P. Ferraro, P. De Natale, Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques. J. Opt. A 8, S507–S513 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    T.W. Hansch, B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980) ADSCrossRefGoogle Scholar
  17. 17.
    T. Erdogan, V. Mizrahi, Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers. J. Opt. Soc. Am. 11, 2100–2105 (1994) ADSCrossRefGoogle Scholar
  18. 18.
    G. Gagliardi, P. Ferraro, S. De Nicola, P. De Natale, Interrogation of fiber Bragg-grating resonators by polarization-spectroscopy laser-frequency locking. Opt. Express 15, 3715–3728 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    P.B. Tarsa, D.M. Brzozowski, P. Rabinowitz, K.K. Lehmann, Cavity ringdown strain gauge. Opt. Lett. 29, 1339–1341 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    J. Canning, M.G. Sceats, π-phase-shifted periodic distributed structures in optical fibres by UV post-processing. Electron. Lett. 30, 1344–1345 (1994) ADSCrossRefGoogle Scholar
  21. 21.
    D. Gatti, G. Galzerano, D. Janner, S. Longhi, P. Laporta, Fiber strain sensor based on a π-phase-shifted Bragg grating and the Pound-Drever-Hall technique. Opt. Express 16, 1945–1950 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    T.T.-Y. Lam, M. Salza, G. Gagliardi, J.H. Chow, P. De Natale, Optical fiber 3-axis accelerometer based on lasers locked to π-phase-shifted Bragg gratings. Meas. Sci. Technol. 21, 094010 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    J.H. Chow, B.S. Sheard, D.E. McClelland, M.B. Gray, I.C.M. Littler, Photothermal effects in passive fiber Bragg grating resonators. Opt. Lett. 30, 708–710 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    J.H. Chow, D.E. McClelland, M.B. Gray, I.C.M. Littler, Opt. Lett. 30, 1923–1925 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    T.T.-Y. Lam, J.H. Chow, D.A. Shaddock, M.B. Gray, G. Gagliardi, D.E. McClelland, High resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing. Appl. Opt. 49, 4029–4033 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    W.H. Glenn, IEEE J. Quantum Electron. 25, 1218–1224 (1989) ADSCrossRefGoogle Scholar
  27. 27.
    S. Knudsen, A.B. Tveten, A. Dandridge, IEEE Photonics Technol. Lett. 7, 90–92 (1995) ADSCrossRefGoogle Scholar
  28. 28.
    R.P. Moeller, W.K. Burns, Opt. Lett. 21, 171–173 (1996) ADSCrossRefGoogle Scholar
  29. 29.
    S. Foster, A. Tikhomirov, M. Milnes, IEEE J. Quantum Electron. 43, 378–384 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    K.H. Wanser, Electron. Lett. 28, 53–54 (1992) ADSCrossRefGoogle Scholar
  31. 31.
    L.Z. Duan, Electron. Lett. 46, 1515 (2010) CrossRefGoogle Scholar
  32. 32.
    P. Maddaloni, P. Cancio, P. De Natale, Meas. Sci. Technol. 20, 052001 (2009) ADSCrossRefGoogle Scholar
  33. 33.
    G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, Probing the ultimate limit of fiber-optic strain sensing. Science 330, 1081–1084 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    L.Z. Duan, General treatment of the thermal noises in optical fibers. Phys. Rev. A 86, 023817 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    H.P. Loock, W.S. Hopkins, C. Morris-Blair, R. Resendes, J. Saari, N.R. Trefiak, Recording the sound of musical instruments with FBGs: the photonic pickup. Appl. Opt. 48, 2735–2741 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    S. Avino, J.A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J.R. Mester, C. Nicholaou, H.-P. Loock, Musical instrument pickup based on a laser locked to an optical fiber resonator. Opt. Express 19, 25057–25065 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    N. Ballard, D. Paz-Soldan, P. Kung, H.P. Loock, Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup. Appl. Opt. 49, 2198–2203 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    W.R. Seitz, Chemical sensors based on fiber optics. Anal. Chem. 56, A16 (1984) Google Scholar
  39. 39.
    M.M. Lopez, A.A. Atherton, W.G. Tong, Ultrasensitive detection of proteins and antibodies by absorption-based laser wave-mixing detection using a chromophore label. Anal. Biochem. 399, 147–151 (2010) CrossRefGoogle Scholar
  40. 40.
    L. van der Sneppen, F. Ariese, C. Gooijer, W. Ubachs, Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry. Annu. Rev. Anal. Chem. 2, 13–35 (2009) CrossRefGoogle Scholar
  41. 41.
    J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008) CrossRefGoogle Scholar
  42. 42.
    M. Gupta, H. Jiao, A. O’Keefe, Cavity-enhanced spectroscopy in optical fibers. Opt. Lett. 27, 1878–1880 (2002) ADSCrossRefGoogle Scholar
  43. 43.
    T. von Lerber, M.W. Sigrist, Cavity-ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing. Appl. Opt. 41, 3567–3575 (2002) ADSCrossRefGoogle Scholar
  44. 44.
    A.M. Armani, K.J. Vahala, Heavy water detection using ultra-high-Q microcavities. Opt. Lett. 31, 1896–1898 (2006) ADSCrossRefGoogle Scholar
  45. 45.
    G. Farca, S.I. Shopova, A.T. Rosenberger, Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes. Opt. Express 15, 17443–17448 (2007) ADSCrossRefGoogle Scholar
  46. 46.
    I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107, 270802 (2011) CrossRefGoogle Scholar
  47. 47.
    B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué, Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55 (2010) ADSCrossRefGoogle Scholar
  48. 48.
    J.J. Burmeister, M.A. Arnold, Evaluation of measurement sites for non-invasive blood glucose sensing with near-infrared transmission spectroscopy. Clin. Chem. 45, 1621–1627 (1999) Google Scholar
  49. 49.
    N. Ghosh, S.K. Majumder, P.K. Gupta, Polarized fluorescence spectroscopy of human tissues. Opt. Lett. 27, 2007–2009 (2002) ADSCrossRefGoogle Scholar
  50. 50.
    L. Nitin Seetohul, Z. Ali, M. Islam, Liquid-phase broadband cavity enhanced absorption spectroscopy (BBCEAS) studies in a 20 cm cell. Analyst 134, 1887–1895 (2009) ADSCrossRefGoogle Scholar
  51. 51.
    M. Schnippering et al., Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: a new probe of electrochemical. Electrochem. Commun. 10, 1827–1830 (2008) CrossRefGoogle Scholar
  52. 52.
    P.B. Tarsa, P. Rabinowitz, K.K. Lehmann, Evanescent field absorption in a passive optical fiber using continuous wave cavity ring-down spectroscopy. Chem. Phys. Lett. 383, 297–303 (2004) ADSCrossRefGoogle Scholar
  53. 53.
    A. Sharma, J. Kompella, P.K. Mishra, Analysis of fiber directional couplers and coupler half-blocks using a new simple model for single-mode fibers. J. Lightwave Technol. 8 (1990) Google Scholar
  54. 54.
    H. Waechter, J. Litman, A.H. Cheung, J.A. Barnes, H.-P. Loock, Chemical sensing using fiber cavity ring-down spectroscopy. Sensors 10, 1716–1742 (2010) CrossRefGoogle Scholar
  55. 55.
    H. Waechter, D. Munzke, A. Jang, H.P. Loock, Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy. Anal. Chem. 83, 2719–2725 (2011) CrossRefGoogle Scholar
  56. 56.
    C.M. Rushworth, D. James, C.J.V. Jones, C. Vallance, Fabrication of an optical fiber reflective notch coupler. Opt. Lett. 36, 2952–2954 (2011) ADSCrossRefGoogle Scholar
  57. 57.
    S. Avino, A. Giorgini, M. Salza, M. Fabian, G. Gagliardi, P. De Natale, Evanescent-wave comb spectroscopy of liquids with strongly-dispersive optical fiber cavities. Appl. Phys. Lett. 102, 201116 (2013) ADSCrossRefGoogle Scholar
  58. 58.
    T. Gherman, D. Romanini, Modelocked cavity-enhanced absorption spectroscopy. Opt. Express 10, 1033 (2002) ADSCrossRefGoogle Scholar
  59. 59.
    M. Buback, H.-P. Vogele, FT-NIR Atlas (VCH, Weinheim, 1993) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Saverio Avino
    • 1
    Email author
  • Antonio Giorgini
    • 1
  • Paolo De Natale
    • 2
  • Hans-Peter Loock
    • 3
  • Gianluca Gagliardi
    • 1
  1. 1.Istituto Nazionale di OtticaConsiglio Nazionale delle RicerchePozzuoli (Napoli)Italy
  2. 2.Istituto Nazionale di OtticaConsiglio Nazionale delle RicercheSesto FiorentinoItaly
  3. 3.Dept. of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations