Fiber Loop Ringdown Sensors and Sensing

  • Chuji WangEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 179)


Fiber loop ringdown (FLRD) spectroscopy evolves directly from cavity ringdown spectroscopy, using a section of optical waveguide to replace the mirror-based cavity to achieve the multi-pass approach. Over the last several years, FLRD has gone far beyond the original applications of cavity ringdown spectroscopy to trace gas measurements to a broad range of applications in chemical, physical, and biological sensing. Using a uniform sensing scheme—measuring time to sense a quantity, FLRD is not only able to adopt a wide variety of sensing mechanisms for individual sensor fabrication, but is also uniquely suitable for large-scale, multi-function sensor network development.


Round Trip Photonic Crystal Fiber Structure Heath Monitoring Optical Loss Single Mode Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work and highlights covered in this chapter bridge a period of 10 years of the emerging technique of FLRD. Many results from Mississippi State University included in this chapter came from the collaborative effort of former and current graduate students working in my research group. Their names and substantial scientific contributions are partially reflected in the references below. In particular, I want to thank Susan Scherrer, Armstrong Mbi, Chamini Herath, Malik (Burak) Kaya, Peeyush Sahay, and Haifa Alali.

Our FLRD research is currently supported by the National Science Foundation (#CMMI-0927539) and the US Department of Energy (#AC84132N through Savannah River Nuclear Solutions LLC).


  1. 1.
    G. Berden, R. Engeln (eds.), Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, West Sussex, 2009) Google Scholar
  2. 2.
    H.-P. Loock, Ring-down absorption spectroscopy for analytical microdevices. TrAC, Trends Anal. Chem. 25, 655–664 (2006) CrossRefGoogle Scholar
  3. 3.
    H.-P. Loock, J.A. Barnes, G. Gagliardi, R. Li, R.D. Oleschuk, H. Wächter, Absorption detection using optical waveguide cavities. Can. J. Chem. 88, 401–410 (2010) CrossRefGoogle Scholar
  4. 4.
    C. Vallance, Innovations in cavity ringdown spectroscopy. New J. Chem. 97, 867–874 (2005) CrossRefGoogle Scholar
  5. 5.
    A. O’Keefe, D.A.G. Deacon, Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988) ADSCrossRefGoogle Scholar
  6. 6.
    K.W. Busch, M.A. Busch (eds.), Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique. ACS Symposium Series, vol. 720 (American Chemical Society, Washington, 1999) Google Scholar
  7. 7.
    G. Berden, R. Peeters, G. Meijer, Cavity ring-down spectroscopy: experimental schemes and applications. Int. Rev. Phys. Chem. 19, 565–607 (2000) CrossRefGoogle Scholar
  8. 8.
    B.A. Paldus, A.A. Kachanov, An historical overview of cavity-enhanced methods. Can. J. Phys. 83, 975–999 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    M.I. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Cavity ring-down and cavity enhanced spectroscopy using diode lasers. Annu. Rep. Prog. Chem., Sect. C, Phys. Chem. 101, 100–142 (2005) CrossRefGoogle Scholar
  10. 10.
    C. Wang, G.P. Miller, C.B. Winstead, Cavity ringdown laser absorption spectroscopy, in Encyclopedia of Analytical Chemistry: Instrumentation and Applications (Wiley, Chichester, 2008) Google Scholar
  11. 11.
    K.K. Lehmann, Ring-down cavity spectroscopy cell using continuous wave excitation for trace species detection. U.S. Patent No. 5,528,040, 1996 Google Scholar
  12. 12.
    D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, CW cavity ringdown spectroscopy. Chem. Phys. Lett. 264, 316–322 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Paldus, J.S. Harris Jr., J. Martin, J. Xie, R.N. Zare, Laser diode cavity ring-down spectroscopy using acousto-optic modulator stabilization. J. Appl. Phys. 82, 3199–3204 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    A.C.R. Pipino, J.W. Hudgens, R.E. Huie, Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity. Rev. Sci. Instrum. 68, 2978–2989 (1997) ADSCrossRefGoogle Scholar
  15. 15.
    K.K. Lehmann, P. Rabinowitz, High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster’s angle prism retrorefrectors. U.S. Patent No, 5,973,864, 1999 Google Scholar
  16. 16.
    T. Von Lerber, M.W. Sigrist, Time constant extraction from noisy cavity ring-down signals. Chem. Phys. Lett. 353, 131–137 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    T. Von Lerber, M.W. Sigrist, Cavity ring-down principle for fiber-optic resonators: experimental realization of bending loss and evanescent-field sensing. Appl. Opt. 41, 3567–3575 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    D.E. Vogler, M.G. Muller, M.W. Sigrist, Fiber-optical cavity sensing of hydrogen diffusion. Appl. Opt. 42, 5413–5417 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    Z. Tong, A. Wright, T. McCormick, R. Li, R.D. Oleschuk, H.-P. Loock, Phase-shift fiber-loop ring-down spectroscopy. Anal. Chem. 76, 6594–6599 (2004) CrossRefGoogle Scholar
  20. 20.
    M. Gupta, H. Jiao, A. O’Keefe, Cavity-enhanced spectroscopy in optical fibers. Opt. Lett. 27, 1878–1880 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    C. Wang, Plasma-cavity ringdown spectroscopy (P-CRDS) for elemental and isotopic measurements. J. Anal. At. Spectrom. 22, 1347–1363 (2007) CrossRefGoogle Scholar
  22. 22.
    M. Andachi, T. Nakayama, M. Kawasaki, S. Kurokawa, H.-P. Loock, Fiber-optic ring-down spectroscopy using a tunable picosecond gain-switched diode laser. Appl. Phys. B 88, 131–135 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    G. Stewart, K. Atherton, H. Yu, B. Culshaw, An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements. Meas. Sci. Technol. 12, 843–849 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    R.S. Brown, I. Kozin, Z. Tong, R.D. Oleschuk, H.-P. Loock, Fiber-loop ring-down spectroscopy. J. Chem. Phys. 117, 10444–10447 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    P.B. Tarsa, K.K. Lehmann, P. Rabinowitz, A passive optical fiber resonator for cavity ringdown spectroscopy, in Abstracts of Papers, 224th ACS National Meeting, Boston, MA, United States, August 18–22 (2002) Google Scholar
  26. 26.
    Z. Tong, M. Jakubinek, A. Wright, A. Gillies, H.-P. Loock, Fiber-loop ring-down spectroscopy: a sensitive absorption technique for small liquid samples. Rev. Sci. Instrum. 74, 4818–4826 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    C. Wang, S.T. Scherrer, Fiber ringdown pressure sensors. Opt. Lett. 29, 352–354 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    C. Wang, S.T. Scherrer, Fiber loop ringdown for physical sensor development: pressure sensor. Appl. Opt. 43, 6458–6464 (2004) ADSCrossRefGoogle Scholar
  29. 29.
    C.M. Rushworth, D. James, C.J.V. Jones, C. Vallance, Fabrication of an optical fiber reflective notch coupler. Opt. Lett. 36, 2952–2954 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    C.M. Rushworth, D. James, J.W.L. Lee, C. Vallance, Top notch design for fiber-loop cavity ring-down spectroscopy. Anal. Chem. 83, 8492–8500 (2011) CrossRefGoogle Scholar
  31. 31.
    R. Augustine, C. Krusen, C. Wang, W. Yan, System and method for controlling a light source for cavity ring-down spectroscopy. U.S. Patent No. 7,277,177 B2, 2007 Google Scholar
  32. 32.
    C. Wang, S.P. Koirala, S.T. Scherrer, Y. Duan, C.B. Winstead, Diode laser microwave induced plasma cavity ringdown spectrometer: performance and perspective. Rev. Sci. Instrum. 75, 1305–1313 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    M. Kakui, Fiber lasers: pulsed fiber lasers reach 50 kW peak power at <100 ps pulse duration (2012). Available online:
  34. 34.
    P. Zalicki, R.N. Zare, Cavity ring-down spectroscopy for quantitative absorption measurements. J. Chem. Phys. 102, 2708–2717 (1995) ADSCrossRefGoogle Scholar
  35. 35.
    J.T. Hodges, J.P. Looney, R.D. van Zee, Laser bandwidth effects in quantitative cavity ring-down spectroscopy. Appl. Opt. 35, 4112–4116 (1996) ADSCrossRefGoogle Scholar
  36. 36.
    K.K. Lehmann, H. Huang (eds.), Optimal Signal Processing in Cavity Ring-Down Spectroscopy in Frontiers of Molecular Spectroscopy (Elsevier, Oxford, 2008), pp. 623–658 Google Scholar
  37. 37.
    C. Wang, M. Kaya, C. Wang, Evanescent field-fiber loop ringdown glucose sensor. J. Biomed. Opt. 17, 037004 (2012) ADSCrossRefGoogle Scholar
  38. 38.
    C. Wang, Fiber loop ringdown—a time-domain sensing technique for multi-function fiber optic sensor platforms: current status and design perspectives. Sensors 9, 7595–7621 (2009) CrossRefGoogle Scholar
  39. 39.
    H. Waechter, J. Litman, A.H. Cheung, J.A. Barnes, H.-P. Loock, Chemical sensing using fiber cavity ring-down spectroscopy. Sensors 10, 1716–1742 (2010) CrossRefGoogle Scholar
  40. 40.
    R. Li, H.-P. Loock, R.D. Oleschuk, Capillary electrophoresis absorption detection using fiber-loop ring-down spectroscopy. Anal. Chem. 78, 5685–5692 (2006) CrossRefGoogle Scholar
  41. 41.
    C. Wang, Fiber ringdown temperature sensors. Opt. Eng. 44, 030503 (2005) ADSCrossRefGoogle Scholar
  42. 42.
    N. Ni, C.C. Chan, L. Xia, P. Shum, Fiber cavity ring-down refractive index sensor. IEEE Photonics Technol. Lett. 20, 1351–1353 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    P.B. Tarsa, A.D. Wist, P. Rabinowitz, K.K. Lehmann, Single-cell detection by cavity ring-down spectroscopy. Appl. Phys. Lett. 85, 4523–4525 (2004) ADSCrossRefGoogle Scholar
  44. 44.
    H.-P. Loock, P. Wentzell, Detection limits of chemical sensors: applications and misapplications. Sens. Actuators B 173, 157–163 (2012) CrossRefGoogle Scholar
  45. 45.
    C. Wang, Unpublished data (2004) Google Scholar
  46. 46.
    J.A. Barnes, R.S. Brown, A.H. Cheung, M.A. Dreher, G. Mackey, H.-P. Loock, Chemical sensing using a polymer coated long-period fiber grating interrogated by ring-down spectroscopy. Sens. Actuators B 148, 221–226 (2010) CrossRefGoogle Scholar
  47. 47.
    H. Li, D. Li, G. Song, Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 26, 1647–1657 (2004) MathSciNetCrossRefGoogle Scholar
  48. 48.
    K.T.V. Grattan, T. Sun, Fiber optic sensor technology: an overview. Sens. Actuators A 82, 40–61 (2000) CrossRefGoogle Scholar
  49. 49.
    O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors. Anal. Chem. 76, 3269–3283 (2004) CrossRefGoogle Scholar
  50. 50.
    C. McDonagh, C.S. Burke, B.D. MacCraith, Optical chemical sensors. Chem. Rev. 108, 400–422 (2008) CrossRefGoogle Scholar
  51. 51.
    C.S. Chu, Y.L. Lo, High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes. Sens. Actuators B 124, 376–382 (2007) CrossRefGoogle Scholar
  52. 52.
    T.S. Yeh, C.S. Chu, Y.L. Lo, Highly sensitive optical fiber oxygen sensor using Pt(II) complex embedded in sol-gel matrices. Sens. Actuators B 119, 701–707 (2006) CrossRefGoogle Scholar
  53. 53.
    J.R. Epstein, D.R. Walt, Fluorescence-based fibre optic arrays: a universal platform for sensing. Chem. Soc. Rev. 32, 203–214 (2003) CrossRefGoogle Scholar
  54. 54.
    C.D. Geddes, J.R. Lakowicz (eds.), Glucose Sensing in Topics in Fluorescence Spectroscopy (Springer, New York, 2006), pp. 351–375 Google Scholar
  55. 55.
    Z. Zhang, K.T.V. Grattan, A.W. Palmer, Fiber-optic high temperature sensor based on the fluorescence lifetime of alexandrite. Rev. Sci. Instrum. 63, 3869–3873 (1992) ADSCrossRefGoogle Scholar
  56. 56.
    J. Mulrooney, J. Clifford, C. Fitzpatrick, E. Lewis, Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sens. Actuators A 136, 104–110 (2007) CrossRefGoogle Scholar
  57. 57.
    B. Alfeeli, G. Pickrell, A. Wang, Sub-nanoliter spectroscopic gas sensor. Sensors 6, 1308–1320 (2006) CrossRefGoogle Scholar
  58. 58.
    S. Tao, S. Gong, J.C. Fanguy, X. Hu, The application of a light guiding flexible tubular waveguide in evanescent wave absorption optical sensing. Sens. Actuators B 120, 724–731 (2007) CrossRefGoogle Scholar
  59. 59.
    W. Peng, G.R. Pickrell, F. Shen, A. Wang, Experimental investigation of optical waveguide-based multigas sensing. IEEE Photonics Technol. Lett. 16, 2317–2319 (2004) ADSCrossRefGoogle Scholar
  60. 60.
    W. Yuan, H.P. Ho, C.L. Wong, S.K. Kong, C. Lin, Surface plasmon resonance biosensor incorporated in a Michelson interferometer with enhanced sensitivity. IEEE Sens. J. 7, 70–73 (2007) CrossRefGoogle Scholar
  61. 61.
    Ch. Stamm, R. Dangel, W. Lukosz, Biosensing with the integrated-optical difference interferometer: dual-wavelength operation. Opt. Commun. 153, 347–359 (1998) ADSCrossRefGoogle Scholar
  62. 62.
    F. Shen, W. Peng, K.L. Cooper, G. Pickrell, A. Wang, UV-induced intrinsic Fabry-Perot interferometric fiber sensors. Proc. SPIE 5590, 47–56 (2004) ADSCrossRefGoogle Scholar
  63. 63.
    K.A. Chang, H.J. Lim, C.B. Su, A fibre optic Fresnel ratio meter for measurements of solute concentration and refractive index change in fluid. Meas. Sci. Technol. 13, 1962–1965 (2002) ADSCrossRefGoogle Scholar
  64. 64.
    R. Kashyap (ed.), Fiber Bragg Gratings (Academic Press, San Diego, 1999) Google Scholar
  65. 65.
    R.O. Claus, K.A. Murphy, A. Wang, R.G. May (eds.), High-Temperature Optical Fiber Sensors in Optical Fiber Smart Materials and Structures (Wiley, New York, 1995), pp. 537–562 Google Scholar
  66. 66.
    Y. Zhu, K.L. Cooper, G.R. Pickrell, A. Wang, High-temperature fiber-tip pressure sensor. J. Lightwave Technol. 24, 861–869 (2006) ADSCrossRefGoogle Scholar
  67. 67.
    W. Peng, G.R. Pickrell, A. Wang, High temperature fiber optic cubic-zirconia pressure sensor. Opt. Eng. 44, 124402 (2005) ADSCrossRefGoogle Scholar
  68. 68.
    Z. Huang, W. Peng, J. Xu, G.R. Pickrell, A. Wang, Fiber temperature sensor for high-pressure environment. Opt. Eng. 44, 104401 (2005) ADSCrossRefGoogle Scholar
  69. 69.
    Z. Huang, X. Chen, Y. Zhu, A. Wang, Wavefront splitting intrinsic Fabry-Perot fiber optic sensor. Opt. Eng. Lett. 44, 070501 (2005) ADSCrossRefGoogle Scholar
  70. 70.
    F. Shen, A. Wang, Frequency estimation-based signal processing algorithm for white-light optical fiber Fabry-Perot interferometers. Appl. Opt. 44, 5206–5214 (2005) ADSCrossRefGoogle Scholar
  71. 71.
    Y. Zhao, C. Yu, Y. Liao, Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement. Opt. Laser Technol. 36, 39–42 (2004) ADSCrossRefGoogle Scholar
  72. 72.
    S. Pal, T. Sun, K.T.V. Grattan, S.A. Wade, S.F. Collins, G.W. Baxter, B. Dussardier, G. Monnom, Stain-independent temperature measurement using a type-I and type-IIA optical fiber Bragg grating combination. Rev. Sci. Instrum. 75, 1327–1331 (2004) ADSCrossRefGoogle Scholar
  73. 73.
    L. Van der Sneppen, F. Ariese, C. Gooijer, W. Ubachs, Liquid-phase and evanescent-wave ring-down spectroscopy in analytical chemistry. Annu. Rev. Anal. Chem. 2, 13–35 (2009) CrossRefGoogle Scholar
  74. 74.
    P.B. Tarsa, P. Rabinowitz, K.K. Lehmann, Evanescent field absorption in a passive optical fiber resonator using continuous-wave cavity ring-down spectroscopy. Chem. Phys. Lett. 383, 297–303 (2004) ADSCrossRefGoogle Scholar
  75. 75.
    C. Wang, C. Herath, Fabrication and characterization of fiber loop ringdown evanescent field sensors. Meas. Sci. Technol. 21, 085205 (2010) ADSCrossRefGoogle Scholar
  76. 76.
    C. Herath, C. Wang, M. Kaya, D. Chevalier, Fiber loop ringdown DNA and bacteria sensors. J. Biomed. Opt. 16, 050501 (2011) ADSCrossRefGoogle Scholar
  77. 77.
    C. Wang, C. Herath, High-sensitivity fiber-loop ringdown evanescent-field index sensors using single-mode fiber. Opt. Lett. 35, 1629–1631 (2010) ADSCrossRefGoogle Scholar
  78. 78.
    Z. Tian, S.S.-H. Yam, H.-P. Loock, Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technol. Lett. 20, 1387–1389 (2008) ADSCrossRefGoogle Scholar
  79. 79.
    Z. Tian, S.S.-H. Yam, J. Barnes, W. Bock, P. Greit, J.M. Fraser, H.-P. Loock, R.D. Oleschuk, Refractive index sensing with Mache-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technol. Lett. 20, 626–628 (2008) ADSCrossRefGoogle Scholar
  80. 80.
    W. Wong, W. Zhou, C.C. Chan, X. Dong, K.C. Leong, Cavity ringdown refractive index sensor using photonic crystal fiber interferometer. Sens. Actuators B 161, 108–113 (2011) CrossRefGoogle Scholar
  81. 81.
    C. Wang, A. Mbi, An alternative method to develop fiber grating temperature sensors using the fiber loop ringdown scheme. Meas. Sci. Technol. 17, 1741–1745 (2006) ADSCrossRefGoogle Scholar
  82. 82.
    A. Mbi, Novel fiber optic temperature sensors: fiber grating loop ringdown. M.S. thesis, Mississippi State University, May 2006 Google Scholar
  83. 83.
    M.B. Reid, M. Özcan, Temperature dependence of fiber optical Bragg grating at low temperature. Opt. Eng. 37, 237–240 (1998) ADSCrossRefGoogle Scholar
  84. 84.
    K.T.V. Grattan, B.T. Meggitt (eds.), Optical Fiber Sensor Technology, vol. 2: Devices and Technology (Springer, Berlin, 1998) Google Scholar
  85. 85.
    M. Jiang, W. Zhang, Q. Zhang, Y. Liu, B. Liu, Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy. Opt. Commun. 283, 249–253 (2010) ADSCrossRefGoogle Scholar
  86. 86.
    A.W. Synder, J.D. Love (eds.), Optical Waveguide Theory (Kluwer Academic, Norwell, 2000) Google Scholar
  87. 87.
    N.J. Harrick (ed.), Internal Reflection Spectroscopy (Wiley-Interscience, New York, 1967) Google Scholar
  88. 88.
    F. De Fornel (ed.), Evanescent Wave from Newtonian Optics to Atomic Optics (Springer, Berlin, 2001) Google Scholar
  89. 89.
    H. Matsuoka, Evanescent wave light scattering: a fusion of the evanescent wave and light scattering techniques to the study of colloids and polymers near the interface. Macromol. Rapid Commun. 22, 51–67 (2001) CrossRefGoogle Scholar
  90. 90.
    L. Xu, J.C. Fanguy, K. Soni, S. Tao, Optical fiber humidity sensor based on evanescent-wave scattering. Opt. Lett. 29, 1191–1193 (2004) ADSCrossRefGoogle Scholar
  91. 91.
    P. Polynkin, A. Polynkin, N. Peyghambarian, M. Mansuripur, Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Opt. Lett. 30, 1273–1275 (2005) ADSCrossRefGoogle Scholar
  92. 92.
    M. Schnippering, S.R.T. Neil, S.R. Mackenzie, P.R. Unwin, Evanescent wave cavity-based spectroscopic techniques as probes of interfacial processes. Chem. Soc. Rev. 40, 207–220 (2011) CrossRefGoogle Scholar
  93. 93.
    C. Wang, N. Srivastava, B.A. Jones, R.B. Reese, A novel multiple species ringdown spectrometer for in situ measurements of methane, carbon dioxide, and carbon isotope. Appl. Phys. B 92, 259–270 (2008) ADSCrossRefGoogle Scholar
  94. 94.
    HITRAN 96 database.
  95. 95.
    G.A. Valaskovic, M. Hoton, G.H. Morrison, Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes. Appl. Opt. 34, 1215–1228 (1995) ADSCrossRefGoogle Scholar
  96. 96.
    L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003) ADSCrossRefGoogle Scholar
  97. 97.
    T.A. Birks, Y.W. Li, The shape of fiber tapers. J. Lightwave Technol. 10, 432–438 (1992) ADSCrossRefGoogle Scholar
  98. 98.
    B.S. Kawasaki, R.G. Lamont, Biconical-taper single-mode fiber coupler. Opt. Lett. 6, 327–329 (1981) ADSCrossRefGoogle Scholar
  99. 99.
    C. Herath, C. Wang, High precision fiber loop ringdown chemical corrosion sensors. Earth Space 1609–1614 (2010) Google Scholar
  100. 100.
    J. Barnes, M. Dreher, K. Plett, R.S. Brown, C.M. Crudden, H.-P. Loock, Chemical sensor based on a long-period fibre grating modified by a functionalized polydimethylsiloxane coating. Analyst 133, 1541–1549 (2008) ADSCrossRefGoogle Scholar
  101. 101.
    G. Stewart, K. Atherton, B. Culshaw, Cavity-enhanced spectroscopy in fiber cavities. Opt. Lett. 29, 442–444 (2004) ADSCrossRefGoogle Scholar
  102. 102.
    N. Ni, C.C. Chan, Improving the measurement accuracy of CRD fibre amplified loop gas sensing system by using a digital LMS adaptive filter. Meas. Sci. Technol. 17, 2349–2354 (2006) CrossRefGoogle Scholar
  103. 103.
    N. Ni, C.C. Chan, T.K. Chuah, L. Xia, P. Shum, Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter. Meas. Sci. Technol. 19, 115203 (2008) ADSCrossRefGoogle Scholar
  104. 104.
    C.C. Chan, N. Ni, J. Sun, Improving the detection accuracy in fiber Bragg grating-sensors by using a wavelet filter. J. Optoelectron. Adv. Mater. 9, 2376–2379 (2007) Google Scholar
  105. 105.
    H. Waechter, K. Bescherer, C.J. Dürr, R.D. Oleschuk, H.-P. Loock, 405 nm absorption detection in nanoliter volumes. Anal. Chem. 81, 9048–9054 (2009) CrossRefGoogle Scholar
  106. 106.
    M. Kaya, P. Sahay, C. Wang, Reproducibly reversible fiber loop ringdown water sensor embedded in concrete and grout for water monitoring. Sens. Actuators B 176, 803–810 (2012) CrossRefGoogle Scholar
  107. 107.
    C. Wang, Site testing of six fiber loop ringdown sensors for ISD structures monitoring. Report submitted to the U.S. Department of Energy, March 2012 Google Scholar
  108. 108.
    C. Wang, Fiber ringdown pressure/force sensors. U.S. Patent No. 7,241,986, 2007 Google Scholar
  109. 109.
    H. Qiu, Y. Qiu, Z. Chen, B. Fu, X. Chen, G. Li, Multimode fiber ring-down pressure sensor. Microw. Opt. Technol. Lett. 49, 1698–1700 (2007) CrossRefGoogle Scholar
  110. 110.
    Y. Jiang, D. Yang, D. Tang, J. Zhao, Sensitivity enhancement of fiber loop cavity ring-down pressure sensor. Appl. Opt. 48, 6082–6087 (2009) ADSCrossRefGoogle Scholar
  111. 111.
    Y. Jiang, J. Zhao, D. Yang, D. Tang, High-sensitivity pressure sensors based on mechanically induced long-period fiber gratings and fiber loop ring-down. Opt. Commun. 283, 3945–3948 (2010) ADSCrossRefGoogle Scholar
  112. 112.
    D. Tang, D. Yang, Y. Jiang, J. Zhao, H. Wang, S. Jiang, Fiber loop ring-down optical fiber grating gas pressure sensor. Opt. Lasers Eng. 48, 1262–1265 (2010) CrossRefGoogle Scholar
  113. 113.
    P.B. Tarsa, D.M. Brzozowski, P. Rabinowitz, K.K. Lehmann, Cavity ringdown stain gauge. Opt. Lett. 29, 1339–1341 (2004) ADSCrossRefGoogle Scholar
  114. 114.
    N. Ni, C.C. Chan, X.Y. Dong, J. Sun, P. Shum, Cavity ring-down long-period fibre grating strain sensor. Meas. Sci. Technol. 18, 3135–3138 (2007) ADSCrossRefGoogle Scholar
  115. 115.
    H. Qiu, Y. Qiu, Z. Chen, B. Fu, G. Li, Strain measurement by fiber-loop ring-down spectroscopy and fiber mode converter. IEEE Sens. J. 8, 1180–1183 (2008) CrossRefGoogle Scholar
  116. 116.
    J. Gan, Y. Hao, Q. Ye, Z. Pan, H. Cai, R. Qu, Z. Fang, High spatial resolution distributed strain sensor based on linear chirped fiber Bragg grating and fiber loop ringdown spectroscopy. Opt. Lett. 36, 879–881 (2011) ADSCrossRefGoogle Scholar
  117. 117.
    W. Zhou, W. Wong, C.C. Chan, L. Shao, X. Dong, Highly sensitive fiber loop ringdown strain sensor using photonic crystal fiber interferometer. Appl. Opt. 50, 3087–3092 (2011) CrossRefGoogle Scholar
  118. 118.
    S. Avino, J.A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J.R. Mester, C. Nicholaou, H.-P. Loock, Musical instrument pickup based on a laser locked to an optical fiber resonator. Opt. Express 25, 25057–25065 (2011) ADSCrossRefGoogle Scholar
  119. 119.
    G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, Probing the ultimate limit of fiber-optic strain sensing. Science 330, 1081–1084 (2010) ADSCrossRefGoogle Scholar
  120. 120.
    P. Sahay, M. Kaya, C. Wang, Fiber loop ringdown sensors for potential real-time monitoring of cracks in concrete structures: an exploratory study. Sensors 13, 39–57 (2013) CrossRefGoogle Scholar
  121. 121.
    Wang, C. Fiber, Bragg grating loop ringdown method and apparatus. U.S. Patent No. 7,323,677, 2008 Google Scholar
  122. 122.
    X.C. Li, F. Prinz, J. Seim, Thermal behavior of a metal embedded fiber Bragg grating sensor. Smart Mater. Struct. 10, 575–579 (2001) ADSCrossRefGoogle Scholar
  123. 123.
    T. Mizunami, H. Tatehata, H. Kawashima, High-sensitivity cryogenic fiber-Bragg-grating temperature sensors using teflon substrates. Meas. Sci. Technol. 12, 914–917 (2001) ADSGoogle Scholar
  124. 124.
    K. Zhou, D.J. Webb, C. Mou, M. Farries, N. Hayes, Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser. IEEE Photonics Technol. Lett. 21, 1653–1655 (2009) ADSCrossRefGoogle Scholar
  125. 125.
    D.K.C. Wu, B.T. Kuhlmey, B.J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34, 322–324 (2009) CrossRefGoogle Scholar
  126. 126.
    H. Zhang, Y. Qiu, H. Li, A. Huang, H. Chen, G. Li, High-current-sensitivity all-fiber current sensor based on fiber loop architecture. Opt. Express 20, 18591–18599 (2012) ADSCrossRefGoogle Scholar
  127. 127.
    H. Omrani, A. Dudelzak, H.-P. Loock, Fiber-coupled fluorescence and absorption spectroscopy for oil and fuel characterization. Appl. Ind. Opt. JW2A.1 (2012) Google Scholar
  128. 128.
    C. Rushworth, C. Vallance, Fibre loop cavity ring-down spectroscopy for the sensitive and selective detection of minute sample volumes of liquid explosives. Proc. SPIE 7838, 78380Y (2010) ADSCrossRefGoogle Scholar
  129. 129.
    TigerOptics LLC, CRDS trace water analyzer, MTO-1000-H2O Google Scholar
  130. 130.
    G. Li, Y. Qiu, S. Chen, S. Liu, Z. Huang, Multichannel-fiber ringdown sensor based on time-division multiplexing. Opt. Lett. 33, 3022–3024 (2008) CrossRefGoogle Scholar
  131. 131.
    C. Wang, A. Mbi, Optical superposition in double fiber loop ringdown. Proc. SPIE 6377, 637702 (2006) CrossRefGoogle Scholar
  132. 132.
    Y. Gao, Y. Qiu, H. Chen, Y. Huang, G. Li, Four-channel fiber loop ring-down pressure sensor with temperature compensation based on neural networks. Microw. Opt. Technol. Lett. 52, 1796–1799 (2010) CrossRefGoogle Scholar
  133. 133.
    J. Shang, W. Zhang, S. Wei, H. Zhang, Two-channel fiber microcavity strain sensor based on fiber loop ring-down spectroscopy technology. Microw. Opt. Technol. Lett. 54, 1305–1309 (2012) CrossRefGoogle Scholar
  134. 134.
    S. Liu, Y. Yu, J. Zhang, S. Fei, A novel interrogation technique for time-division multiplexing fiber Bragg grating sensor arrays. Proc. SPIE 6781, 67812M (2007) ADSGoogle Scholar
  135. 135.
    D.J.F. Cooper, T. Coroy, P.W.E. Smith, Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays. Appl. Opt. 16, 2643–2654 (2001) ADSCrossRefGoogle Scholar
  136. 136.
    G.A. Cranch, P.J. Nash, Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM. J. Lightwave Technol. 19, 687–699 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics and AstronomyMississippi State UniversityMississippi StateUSA

Personalised recommendations