Advertisement

Introduction to Cavity Enhanced Absorption Spectroscopy

  • Daniele RomaniniEmail author
  • Irène Ventrillard
  • Guillaume Méjean
  • Jérôme Morville
  • Erik Kerstel
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 179)

Abstract

In this introductory chapter we will begin with an historical outline of the development of cavity enhanced absorption methods, with just enough attention to the applications that either motivated them or became conceivable after their development. Given the number of publications in this domain, we will consider only the first demonstrations, and those works leading to substantial improvement or innovation in the state of the art.

Subsequently, rather than reviewing in detail all principal applications, we will provide a review of the many reviews that have already appeared, even quite recently, dealing preferentially with a specific cavity enhanced implementation or a specific domain of application.

Finally, we will provide wide but mostly intuitive foundations for approaching to cavity enhanced methods, by considering first the physics behind the (static) response of a cavity in the spectral domain, followed by a discussion of the physics of the (transient) coupling of different types of lasers to a cavity, going from the ideal tunable monochromatic wave to the realistic noisy continuous wave laser, to the pulsed nanosecond laser, and finally the broadband femtosecond laser combs. We will try to situate the most widespread cavity enhanced schemes along these detailed discussions.

Keywords

Cavity Mode Cavity Resonance Spectral Element Frequency Comb Laser Linewidth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank Kevin Lehmann and Marco Prevedelli for their critical reading of the manuscript and the useful discussions concerning several subtle issues.

References

  1. 1.
    G.D. Boyd, J.P. Gordon, Bell Syst. Tech. J. 40(2), 489 (1961). http://www3.alcatel-lucent.com/bstj/vol40-1961/articles/bstj40-2-489.pdf Google Scholar
  2. 2.
    G.D. Boyd, H. Kogelnik, Bell Syst. Tech. J. 41(4), 1348 (1962). http://www3.alcatel-lucent.com/bstj/vol41-1962/articles/bstj41-4-1347.pdf Google Scholar
  3. 3.
    D.A. Jackson, Proc. R. Soc. A, Math. Phys. Eng. Sci. 263(1314), 289 (1961). doi: 10.1098/rspa.1961.0161. http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.1961.0161 ADSGoogle Scholar
  4. 4.
  5. 5.
    A. Kastler, Appl. Opt. 1(1), 17 (1962). doi: 10.1364/AO.1.000017 ADSGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    J.A. Arnaud, H. Kogelnik, Appl. Opt. 8(8), 1687 (1969). doi: 10.1364/AO.8.001687. http://www.opticsinfobase.org/abstract.cfm?URI=ao-8-8-1687 ADSGoogle Scholar
  10. 10.
    J.P. Goldsborough, Appl. Opt. 3(2), 267 (1964). doi: 10.1364/AO.3.000267 ADSGoogle Scholar
  11. 11.
    R.L. Fork, D.R. Herriott, H. Kogelnik, Appl. Opt. 3(12), 1471 (1964). doi: 10.1364/AO.3.001471. http://www.opticsinfobase.org/abstract.cfm?URI=ao-3-12-1471 ADSGoogle Scholar
  12. 12.
    G. Rempe, R.J. Thompson, H.J. Kimble, R. Lalezari, Opt. Lett. 17(5), 363 (1992). http://www.ncbi.nlm.nih.gov/pubmed/19784329 ADSGoogle Scholar
  13. 13.
  14. 14.
    J.M. Herbelin, J.a. McKay, M.a. Kwok, R.H. Ueunten, D.S. Urevig, D.J. Spencer, D.J. Benard, Appl. Opt. 19(1), 144 (1980). http://www.ncbi.nlm.nih.gov/pubmed/20216808 ADSGoogle Scholar
  15. 15.
    R. Engeln, G. von Helden, G. Berden, G. Meijer, Chem. Phys. Lett. 262(1–2), 105 (1996). doi: 10.1016/0009-2614(96)01048-2. http://linkinghub.elsevier.com/retrieve/pii/0009261496010482 ADSGoogle Scholar
  16. 16.
    J.H. van Helden, D.C. Schram, R. Engeln, Chem. Phys. Lett. 400(4–6), 320 (2004). doi: 10.1016/j.cplett.2004.10.081. http://linkinghub.elsevier.com/retrieve/pii/S0009261404016768 ADSGoogle Scholar
  17. 17.
    D.Z. Anderson, J.C. Frisch, C.S. Masser, Appl. Opt. 23(8), 1238 (1984). http://www.ncbi.nlm.nih.gov/pubmed/18204709 ADSGoogle Scholar
  18. 18.
    A. Kastler, Nouv. Rev. Opt. 5(3), 133 (1974). http://iopscience.iop.org/0335-7368/5/3/301 MathSciNetGoogle Scholar
  19. 19.
    J.Y. Lee, J.W. Hahn, Appl. Phys. B, Lasers Opt. 79(3), 371 (2004). doi: 10.1007/s00340-004-1550-2. http://www.springerlink.com/index/10.1007/s00340-004-1550-2 Google Scholar
  20. 20.
    T.M. Crawford, in Southwest Conf. on Optics ’85, ed. by S.C. Stotlar. Proceedings of SPIE, vol. 0540 (1985), pp. 295–302. doi: 10.1117/12.976129. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.976129 Google Scholar
  21. 21.
    S.N. Jabr, T.M. Crawford, J. Opt. Soc. Am. A 1(12), 1329 (1984). http://adsabs.harvard.edu/abs/1984JOSAA...1.1329J ADSGoogle Scholar
  22. 22.
    A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59(12), 2544 (1988). doi: 10.1063/1.1139895. http://link.aip.org/link/RSINAK/v59/i12/p2544/s1&Agg=doi ADSGoogle Scholar
  23. 23.
    D. Romanini, K.K. Lehmann, J. Chem. Phys. 99(9), 6287 (1993). doi: 10.1063/1.465866. http://link.aip.org/link/JCPSA6/v99/i9/p6287/s1&Agg=doi ADSGoogle Scholar
  24. 24.
    J.J. Scherer, D. Voelkel, D.J. Rakestraw, J.B. Paul, C.P. Collier, R.J. Saykally, A. O’Keefe, Chem. Phys. Lett. 245(2–3), 273 (1995). doi: 10.1016/0009-2614(95)00969-B. http://linkinghub.elsevier.com/retrieve/pii/000926149500969B ADSGoogle Scholar
  25. 25.
    J.J. Scherer, J.B. Paul, C.P. Collier, R.J. Saykally, J. Chem. Phys. 102(13), 5190 (1995). doi: 10.1063/1.469244. http://link.aip.org/link/JCPSA6/v102/i13/p5190/s1&Agg=doi ADSGoogle Scholar
  26. 26.
    T. Yu, M.C. Lin, J. Am. Chem. Soc. 115(10), 4371 (1993). doi: 10.1021/ja00063a069 http://pubs.acs.org/doi/abs/10.1021/ja00063a069 Google Scholar
  27. 27.
    G. Meijer, M.G.H. Boogaarts, R.T. Jongma, D.H. Parker, A.M. Wodtke, Chem. Phys. Lett. 217(1–2), 112 (1994). doi: 10.1016/0009-2614(93)E1361-J. http://linkinghub.elsevier.com/retrieve/pii/0009261493E1361J ADSGoogle Scholar
  28. 28.
    P. Zalicki, R.N. Zare, J. Chem. Phys. 102(7), 2708 (1995). doi: 10.1063/1.468647. http://link.aip.org/link/JCPSA6/v102/i7/p2708/s1&Agg=doi ADSGoogle Scholar
  29. 29.
  30. 30.
    K.K. Lehmann, D. Romanini, J. Chem. Phys. 105(23), 10263 (1996). doi: 10.1063/1.472955. http://link.aip.org/link/JCPSA6/v105/i23/p10263/s1&Agg=doi ADSGoogle Scholar
  31. 31.
    J. Martin, B.A. Paldus, P. Zalicki, E.H. Wahl, T.G. Owano, J.S. Harris, C.H. Kruger, R.N. Zare, Chem. Phys. Lett. 258(1–2), 63 (1996). doi: 10.1016/0009-2614(96)00609-4. http://linkinghub.elsevier.com/retrieve/pii/0009261496006094 ADSGoogle Scholar
  32. 32.
    J.T. Hodges, J.P. Looney, R.D. van Zee, J. Chem. Phys. 105(23), 10278 (1996). doi: 10.1063/1.472956. http://link.aip.org/link/JCPSA6/v105/i23/p10278/s1&Agg=doi ADSGoogle Scholar
  33. 33.
    R.D. van Zee, J.T. Hodges, J.P. Looney, Appl. Opt. 38(18), 3951 (1999). http://www.ncbi.nlm.nih.gov/pubmed/18320004 ADSGoogle Scholar
  34. 34.
    D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264(3–4), 316 (1997). doi: 10.1016/S0009-2614(96)01351-6. http://linkinghub.elsevier.com/retrieve/pii/S0009261496013516 ADSGoogle Scholar
  35. 35.
    D. Romanini, A.A. Kachanov, F. Stoeckel, Chem. Phys. Lett. 270(5–6), 538 (1997). doi: 10.1016/S0009-2614(97)00406-5. http://linkinghub.elsevier.com/retrieve/pii/S0009261497004065 ADSGoogle Scholar
  36. 36.
    D. Romanini, A.A. Kachanov, F. Stoeckel, Chem. Phys. Lett. 270(5–6), 546 (1997). doi: 10.1016/S0009-2614(97)00407-7. http://linkinghub.elsevier.com/retrieve/pii/S0009261497004077 ADSGoogle Scholar
  37. 37.
    R.M. Curran, T.M. Crook, D.J. Zook, MRS Proc. 105, 175 (1987). doi: 10.1557/PROC-105-175 Google Scholar
  38. 38.
    B.A. Paldus, C.C. Harb, T.G. Spence, B. Willke, J. Xie, J.S. Harris, R.N. Zare, J. Appl. Phys. 83(8), 3991 (1998). doi: 10.1063/1.367155. http://link.aip.org/link/JAPIAU/v83/i8/p3991/s1&Agg=doi ADSGoogle Scholar
  39. 39.
    J.T. Hodges, D. Lisak, Appl. Phys. B, Lasers Opt. 85(2–3), 375 (2006). doi: 10.1007/s00340-006-2411-y. http://www.springerlink.com/index/10.1007/s00340-006-2411-y ADSGoogle Scholar
  40. 40.
    D. Lisak, J.T. Hodges, R. Ciurylo, Phys. Rev. A 73(1), 1 (2006). doi: 10.1103/PhysRevA.73.012507. http://link.aps.org/doi/10.1103/PhysRevA.73.012507 Google Scholar
  41. 41.
    G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, P. De Natale, Phys. Rev. Lett. 104(11), 1 (2010). doi: 10.1103/PhysRevLett.104.110801. http://link.aps.org/doi/10.1103/PhysRevLett.104.110801 Google Scholar
  42. 42.
    H. Huang, K.K. Lehmann, Opt. Express 15(14), 8745 (2007). doi: 10.1364/OE.15.008745. http://www.ncbi.nlm.nih.gov/pubmed/19547210 ADSGoogle Scholar
  43. 43.
    H. Huang, K.K. Lehmann, Appl. Phys. B, Lasers Opt. 94(2), 355 (2009). doi: 10.1007/s00340-008-3293-y. http://www.springerlink.com/index/10.1007/s00340-008-3293-y ADSGoogle Scholar
  44. 44.
    H. Huang, K.K. Lehmann, Chem. Phys. Lett. 463(1–3), 246 (2008). doi: 10.1016/j.cplett.2008.08.030. http://linkinghub.elsevier.com/retrieve/pii/S0009261408011081 ADSGoogle Scholar
  45. 45.
    H. Huang, K.K. Lehmann, Appl. Opt. 47(21), 3817 (2008). doi: 10.1364/AO.47.003817. http://www.ncbi.nlm.nih.gov/pubmed/18641751 ADSGoogle Scholar
  46. 46.
    J. Courtois, J.T. Hodges, Opt. Lett. 37(16), 3354 (2012). doi: 10.1364/OL.37.003354. http://www.opticsinfobase.org/abstract.cfm?URI=ol-37-16-3354 ADSGoogle Scholar
  47. 47.
    M. Hippler, M. Quack, Chem. Phys. Lett. 314(3–4), 273 (1999). doi: 10.1016/S0009-2614(99)01071-4. http://linkinghub.elsevier.com/retrieve/pii/S0009261499010714 ADSGoogle Scholar
  48. 48.
    L. Biennier, D. Romanini, A.A. Kachanov, A. Campargue, B. Bussery-Honvault, R. Bacis, J. Chem. Phys. 112(14), 6309 (2000). doi: 10.1063/1.481192. http://link.aip.org/link/JCPSA6/v112/i14/p6309/s1&Agg=doi ADSGoogle Scholar
  49. 49.
    P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenouvrier, V.G. Tyuterev, A. Campargue, J. Mol. Spectrosc. 227(1), 90 (2004). doi: 10.1016/j.jms.2004.05.020. http://linkinghub.elsevier.com/retrieve/pii/S002228520400178X ADSGoogle Scholar
  50. 50.
    J.W. Hahn, Y.S. Yoo, J.Y. Lee, J.W. Kim, H.W. Lee, Appl. Opt. 38(9), 1859 (1999). http://www.ncbi.nlm.nih.gov/pubmed/18305817 ADSGoogle Scholar
  51. 51.
  52. 52.
  53. 53.
    I. Debecker, A.K. Mohamed, D. Romanini, Opt. Express 13(8), 523 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=OPEX-13-8-2906 Google Scholar
  54. 54.
    A. Cygan, D. Lisak, S. Wójtewicz, J. Domyslawska, J.T. Hodges, R. Trawinski, R. Ciurylo, Phys. Rev. A 85(2), 1 (2012). doi: 10.1103/PhysRevA.85.022508 Google Scholar
  55. 55.
    M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, J.S.J. Harris, R.N. Zare, Chem. Phys. Lett. 290(4–6), 335 (1998). doi: 10.1016/S0009-2614(98)00500-4. http://linkinghub.elsevier.com/retrieve/pii/S0009261498005004 ADSGoogle Scholar
  56. 56.
  57. 57.
    S. Kassi, A. Campargue, J. Chem. Phys. 137(23), 234201 (2012). doi: 10.1063/1.4769974. http://www.ncbi.nlm.nih.gov/pubmed/23267478 ADSGoogle Scholar
  58. 58.
    D. Romanini, P. Dupré, R. Jost, Vib. Spectrosc. 19(1), 93 (1999). doi: 10.1016/S0924-2031(99)00018-1. http://linkinghub.elsevier.com/retrieve/pii/S0924203199000181 Google Scholar
  59. 59.
    H. Huang, K.K. Lehmann, Appl. Opt. 49(8), 1378 (2010). doi: 10.1364/AO.49.001378. http://www.opticsinfobase.org/abstract.cfm?URI=ao-49-8-1378 Google Scholar
  60. 60.
    I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, G. Giusfredi, Phys. Rev. Lett. 107(27), 1 (2011). doi: 10.1103/PhysRevLett.107.270802. http://link.aps.org/doi/10.1103/PhysRevLett.107.270802 Google Scholar
  61. 61.
    L. Gianfrani, G. Gagliardi, M. van Burgel, E.R.T. Kerstel, Opt. Express 11(13), 1566 (2003) ADSGoogle Scholar
  62. 62.
    G. Totschnig, D.S. Baer, J. Wang, Appl. Opt. 39(12), 2009 (2000). http://www.opticsinfobase.org/abstract.cfm?id=60847 ADSGoogle Scholar
  63. 63.
    R. Engeln, G. Berden, R. Peeters, G. Meijer, Rev. Sci. Instrum. 69(11), 3763 (1998). doi: 10.1063/1.1149176. http://link.aip.org/link/RSINAK/v69/i11/p3763/s1&Agg=doi ADSGoogle Scholar
  64. 64.
    A. O’Keefe, J.J. Scherer, J.B. Paul, Chem. Phys. Lett. 307(5–6), 343 (1999). doi: 10.1016/S0009-2614(99)00547-3. http://linkinghub.elsevier.com/retrieve/pii/S0009261499005473 ADSGoogle Scholar
  65. 65.
    J.B. Paul, L. Lapson, J.G. Anderson, Appl. Opt. 40(27), 4904 (2001). http://www.ncbi.nlm.nih.gov/pubmed/18360533 ADSGoogle Scholar
  66. 66.
    D.S. Baer, J.B. Paul, M. Gupta, A. O’Keefe, Appl. Phys. B, Lasers Opt. 75(2–3), 261 (2002). doi: 10.1007/s00340-002-0971-z. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00340-002-0971-z ADSGoogle Scholar
  67. 67.
    G.S. Engel, W.S. Drisdell, F.N. Keutsch, E.J. Moyer, J.G. Anderson, Appl. Opt. 45(36), 9221 (2006). http://www.ncbi.nlm.nih.gov/pubmed/17151763newsensitivitylimitsforabsorptionmeasurementsinpassiveopticalcavities.pdf ADSGoogle Scholar
  68. 68.
    J. Morville, M. Chenevier, A.A. Kachanov, D. Romanini, in Proceedings of SPIE, vol. 4485, ed. by A.M. Larar, M.G. Mlynczak (2002), pp. 236–243. doi: 10.1117/12.454256 Google Scholar
  69. 69.
    J. Morville, D. Romanini, A.A. Kachanov, M. Chenevier, Appl. Phys. B, Lasers Opt. 78(3–4), 465 (2004). doi: 10.1007/s00340-003-1363-8. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00340-003-1363-8 ADSGoogle Scholar
  70. 70.
    J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B, Lasers Opt. 80(8), 1027 (2005). doi: 10.1007/s00340-005-1828-z. http://www.springerlink.com/index/10.1007/s00340-005-1828-z ADSGoogle Scholar
  71. 71.
    D. Romanini, M. Chenevier, S. Kassi, M. Schmidt, C. Valant, M. Ramonet, J. Lopez, H.J. Jost, Appl. Phys. B, Lasers Opt. 83(4), 659 (2006). doi: 10.1007/s00340-006-2177-2. http://www.springerlink.com/index/10.1007/s00340-006-2177-2 ADSGoogle Scholar
  72. 72.
    S. Kassi, M. Chenevier, L. Gianfrani, A. Salhi, Y. Rouillard, A. Ouvrard, D. Romanini, Opt. Express 14(23), 11442 (2006). doi: 10.1364/OE.14.011442 ADSGoogle Scholar
  73. 73.
    I. Ventrillard, T. Gonthiez, C. Clerici, D. Romanini, J. Biomed. Opt. 14(6), 64026 (2009). doi: 10.1117/1.3269677. http://www.ncbi.nlm.nih.gov/pubmed/20059264 Google Scholar
  74. 74.
    E.R.T. Kerstel, R.Q. Iannone, M. Chenevier, S. Kassi, H.J. Jost, D. Romanini, Appl. Phys. B, Lasers Opt. 85(2–3), 397 (2006). doi: 10.1007/s00340-006-2356-1. http://www.springerlink.com/index/10.1007/s00340-006-2356-1 ADSGoogle Scholar
  75. 75.
    T.J.A. Butler, D. Mellon, J. Kim, J. Litman, A.J. Orr-Ewing, J. Phys. Chem. A 113(16), 3963 (2009). doi: 10.1021/jp810310b Google Scholar
  76. 76.
    V. Motto-Ros, J. Morville, P. Rairoux, Appl. Phys. B, Lasers Opt. 87(3), 531 (2007). doi: 10.1007/s00340-007-2618-6. http://www.springerlink.com/index/10.1007/s00340-007-2618-6 ADSGoogle Scholar
  77. 77.
    V. Motto-Ros, M. Durand, J. Morville, Appl. Phys. B, Lasers Opt. 91(1), 203 (2008). doi: 10.1007/s00340-008-2950-5. http://www.springerlink.com/index/10.1007/s00340-008-2950-5 ADSGoogle Scholar
  78. 78.
    D.J. Hamilton, M.G.D. Nix, S.G. Baran, G. Hancock, A.J. Orr-Ewing, Appl. Phys. B, Lasers Opt. 100(2), 233 (2009). doi: 10.1007/s00340-009-3811-6. http://www.springerlink.com/index/10.1007/s00340-009-3811-6 ADSGoogle Scholar
  79. 79.
    M. Hippler, C. Mohr, K.A. Keen, E.D. McNaghten, J. Chem. Phys. 133(4), 44308 (2010). doi: 10.1063/1.3461061. http://www.ncbi.nlm.nih.gov/pubmed/20687651 Google Scholar
  80. 80.
    M. Durand, J. Morville, D. Romanini, Phys. Rev. A 82(3), 031803(R) (2010). doi: 10.1103/PhysRevA.82.031803. http://link.aps.org/doi/10.1103/PhysRevA.82.031803 ADSGoogle Scholar
  81. 81.
    G. Maisons, P. Gorrotxategi Carbajo, M. Carras, D. Romanini, Opt. Lett. 35(21), 3607 (2010). doi: 10.1364/OL.35.003607 ADSGoogle Scholar
  82. 82.
    D.J. Hamilton, A.J. Orr-Ewing, Appl. Phys. B, Lasers Opt. 102(4), 879 (2010). doi: 10.1007/s00340-010-4259-4. http://www.springerlink.com/index/10.1007/s00340-010-4259-4 ADSGoogle Scholar
  83. 83.
    J. Ye, L.S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15(1), 6 (1998). http://www.opticsinfobase.org/abstract.cfm?id=35318 ADSGoogle Scholar
  84. 84.
    N.J. van Leeuwen, A.C. Wilson, J. Opt. Soc. Am. B 21(10), 1713 (2004). doi: 10.1364/JOSAB.21.001713. http://www.opticsinfobase.org/abstract.cfm?URI=JOSAB-21-10-1713 ADSGoogle Scholar
  85. 85.
    M.S. Taubman, T.L. Myers, B.D. Cannon, R.M. Williams, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 60(14), 3457 (2004). doi: 10.1016/j.saa.2003.12.057. http://www.ncbi.nlm.nih.gov/pubmed/15561632 ADSGoogle Scholar
  86. 86.
    B.M. Siller, M.W. Porambo, A.A. Mills, B.J. McCall, Opt. Express 19(24), 24822 (2011). http://www.ncbi.nlm.nih.gov/pubmed/22109511 ADSGoogle Scholar
  87. 87.
    F.M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, O. Axner, Opt. Express 15(17), 10822 (2007). doi: 10.1364/OE.15.010822 ADSGoogle Scholar
  88. 88.
    P. Ehlers, I. Silander, J. Wang, O. Axner, J. Opt. Soc. Am. B 29(6), 1305 (2012). doi: 10.1364/JOSAB.29.001305. http://www.opticsinfobase.org/abstract.cfm?URI=josab-29-6-1305 Google Scholar
  89. 89.
  90. 90.
    J.J. Scherer, J.B. Paul, H. Jiao, A. O’Keefe, Appl. Opt. 40(36), 6725 (2001). http://www.ncbi.nlm.nih.gov/pubmed/18364983 ADSGoogle Scholar
  91. 91.
    S.M. Ball, I.M. Povey, E.G. Norton, R.L. Jones, Chem. Phys. Lett. 342(1–2), 113 (2001). doi: 10.1016/S0009-2614(01)00573-5. http://linkinghub.elsevier.com/retrieve/pii/S0009261401005735 ADSGoogle Scholar
  92. 92.
    S.E. Fiedler, A. Hese, A.A. Ruth, Chem. Phys. Lett. 371(3–4), 284 (2003). doi: 10.1016/S0009-2614(03)00263-X. http://linkinghub.elsevier.com/retrieve/pii/S000926140300263X ADSGoogle Scholar
  93. 93.
    S.M. Ball, J.M. Langridge, R.L. Jones, Chem. Phys. Lett. 398(1–3), 68 (2004). doi: 10.1016/j.cplett.2004.08.144. http://linkinghub.elsevier.com/retrieve/pii/S0009261404014009 ADSGoogle Scholar
  94. 94.
    P.S. Johnston, K.K. Lehmann, Opt. Express 16(19), 15013 (2008). http://www.ncbi.nlm.nih.gov/pubmed/18795038 ADSGoogle Scholar
  95. 95.
    S.E. Fiedler, A. Hese, A.A. Ruth, Rev. Sci. Instrum. 76(2), 23107 (2005). doi: 10.1063/1.1841872. http://link.aip.org/link/RSINAK/v76/i2/p023107/s1&Agg=doi Google Scholar
  96. 96.
    G.A. Marcus, H.A. Schwettman, Appl. Opt. 41(24), 5167 (2002). doi: 10.1364/AO.41.005167. http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-24-5167 ADSGoogle Scholar
  97. 97.
    N.R. Newbury, I. Coddington, W.C. Swann, Opt. Express 18(8), 7929 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20588636 Google Scholar
  98. 98.
    R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrillard, S. Kassi, D. Romanini, Phys. Rev. A 85(5), 1 (2012). doi: 10.1103/PhysRevA.85.051804. http://link.aps.org/doi/10.1103/PhysRevA.85.051804 Google Scholar
  99. 99.
  100. 100.
    G. Engel, W.B. Yan, J. Dudek, K.K. Lehmann, P. Rabinowitz, in Laser Spectroscopy XIV International Conference, ed. by R. Blatt, J. Eschner, D. Leibfried, F. Schmidt-Kaler (World Scientific, Singapore, 1999), pp. 314–315 Google Scholar
  101. 101.
    K.K. Lehmann, High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster’s angle prism retroreflectors (1999). http://www.boliven.com/patent/US5973864
  102. 102.
    A.C.R. Pipino, J.W. Hudgens, R.E. Huie, Rev. Sci. Instrum. 68, 2978 (1997). doi: 10.1063/1.1148230 ADSGoogle Scholar
  103. 103.
    T. Udem, J. Reichert, R. Holzwarth, T.W. Hansch, Phys. Rev. Lett. 82(18), 3568 (1999). doi: 10.1103/PhysRevLett.82.3568. http://link.aps.org/doi/10.1103/PhysRevLett.82.3568 ADSGoogle Scholar
  104. 104.
    E.R. Crosson, P. Haar, G.A. Marcus, H.A. Schwettman, B.A. Paldus, T.G. Spence, R.N. Zare, Rev. Sci. Instrum. 70(1), 4 (1999). doi: 10.1063/1.1149533. http://link.aip.org/link/RSINAK/v70/i1/p4/s1&Agg=doi ADSGoogle Scholar
  105. 105.
    T. Gherman, D. Romanini, Opt. Express 10(19), 1033 (2002). doi: 10.1364/OE.10.001033 ADSGoogle Scholar
  106. 106.
    T. Gherman, E. Eslami, D. Romanini, S. Kassi, J.C. Vial, N. Sadeghi, J. Phys. D, Appl. Phys. 37(17), 2408 (2004). doi: 10.1088/0022-3727/37/17/011. http://stacks.iop.org/0022-3727/37/i=17/a=011?key=crossref.762430055a776caaec8cfaa62362d3df ADSGoogle Scholar
  107. 107.
    T. Gherman, S. Kassi, A. Campargue, D. Romanini, Chem. Phys. Lett. 383(3–4), 353 (2004). doi: 10.1016/j.cplett.2003.10.148. http://linkinghub.elsevier.com/retrieve/pii/S0009261403019766 ADSGoogle Scholar
  108. 108.
    M.J. Thorpe, K.D. Moll, R. Jason Jones, B. Safdi, J. Ye, Science 311(5767), 1595 (2006). doi: 10.1126/science.1123921. http://www.ncbi.nlm.nih.gov/pubmed/16543457 ADSGoogle Scholar
  109. 109.
    M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, Opt. Express 16(4), 2387 (2008). doi: 10.1364/OE.16.002387 ADSGoogle Scholar
  110. 110.
    G. Méjean, R. Grilli, C. Abd Alrahman, I. Ventrillard, S. Kassi, D. Romanini, Appl. Phys. Lett. 100(25), 251110 (2012). doi: 10.1063/1.4726190. http://link.aip.org/link/APPLAB/v100/i25/p251110/s1&Agg=doi ADSGoogle Scholar
  111. 111.
    R. Grilli, M. Legrand, A. Kukui, G. Méjean, S. Preunkert, D. Romanini, Geophys. Res. Lett. 40 (2013). doi: 10.1002/grl.50154
  112. 112.
    C. Gohle, B. Stein, A. Schliesser, T. Udem, T.W. Hansch, Phys. Rev. Lett. 99(26), 1 (2007). doi: 10.1103/PhysRevLett.99.263902. http://link.aps.org/doi/10.1103/PhysRevLett.99.263902 Google Scholar
  113. 113.
    M.J. Thorpe, J. Ye, Appl. Phys. B, Lasers Opt. 91(3–4), 397 (2008). doi: 10.1007/s00340-008-3019-1. http://www.springerlink.com/index/10.1007/s00340-008-3019-1 ADSGoogle Scholar
  114. 114.
    S. Schiller, Opt. Lett. 27(9), 766 (2002). doi: 10.1364/OL.27.000766 ADSGoogle Scholar
  115. 115.
    F. Keilmann, C. Gohle, R. Holzwarth, Opt. Lett. 29(13), 1542 (2004). http://www.ncbi.nlm.nih.gov/pubmed/15259740 ADSGoogle Scholar
  116. 116.
    A. Schliesser, M. Brehm, F. Keilmann, D.W. van der Weide, Opt. Express 13(22), 9029 (2005). doi: 10.1364/OPEX.13.009029 ADSGoogle Scholar
  117. 117.
    I. Coddington, W.C. Swann, N.R. Newbury, Phys. Rev. Lett. 100(1), 11 (2008). doi: 10.1103/PhysRevLett.100.013902. http://link.aps.org/doi/10.1103/PhysRevLett.100.013902 Google Scholar
  118. 118.
    P. Giaccari, J.D. Deschênes, P. Saucier, J. Genest, P. Tremblay, Opt. Express 16(6), 4347 (2008). http://www.ncbi.nlm.nih.gov/pubmed/18542532 ADSGoogle Scholar
  119. 119.
    J.D. Deschênes, P. Giaccari, J. Genest, Opt. Express 18(22), 23358 (2010). doi: 10.1364/OE.18.023358 ADSGoogle Scholar
  120. 120.
    B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hansch, N. Picqué, Nat. Photonics 4(1), 55 (2009). doi: 10.1038/nphoton.2009.217. http://www.nature.com/nphoton/journal/v4/n1/abs/nphoton.2009.217.html ADSGoogle Scholar
  121. 121.
    D.W. Chandler, K.E. Strecker, J. Chem. Phys. 136(15), 154201 (2012). doi: 10.1063/1.3700473. http://www.ncbi.nlm.nih.gov/pubmed/22519318 ADSGoogle Scholar
  122. 122.
    S. Kassi, K. Didriche, C. Lauzin, X. de Ghellinck d’Elseghem Vaernewijck, A. Rizopoulos, M. Herman, Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 75(1), 142 (2010). doi: 10.1016/j.saa.2009.09.058. http://www.ncbi.nlm.nih.gov/pubmed/19880347 ADSGoogle Scholar
  123. 123.
    X. de Ghellinck d’Elseghem Vaernewijck, K. Didriche, C. Lauzin, A. Rizopoulos, M. Herman, S. Kassi, Mol. Phys. 109(17–18), 2173 (2011). doi: 10.1080/00268976.2011.602990. http://www.tandfonline.com/doi/abs/10.1080/00268976.2011.602990 ADSGoogle Scholar
  124. 124.
    A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, J. Ye, Phys. Rev. Lett. 107(23), 1 (2011). doi: 10.1103/PhysRevLett.107.233002 Google Scholar
  125. 125.
    J.J. Scherer, J.B. Paul, A. O’Keefe, R.J. Saykally, Chem. Rev. 97, 25 (1997). http://pubs.acs.org/doi/abs/10.1021/cr930048d Google Scholar
  126. 126.
    M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing, M.N.R. Ashfold, J. Chem. Soc. Faraday Trans. 94(3), 337 (1998). doi: 10.1039/a707686j. http://xlink.rsc.org/?DOI=a707686j Google Scholar
  127. 127.
    G. Berden, P. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19(4), 565 (2000). http://www.tandfonline.com/doi/abs/10.1080/014423500750040627#.UjxKi38vQlI Google Scholar
  128. 128.
    G. Berden, G. Meijer, W. Ubachs, in Experimental Methods in the Physical Sciences, vol. 40 (Elsevier, Amsterdam, 2003), pp. 47–82. doi: 10.1016/S1079-4042(03)80018-8 Google Scholar
  129. 129.
    B.A. Paldus, A.A. Kachanov, Can. J. Phys. 83(10), 975 (2005). doi: 10.1139/p05-054. http://www.nrcresearchpress.com/doi/abs/10.1139/p05-054 ADSGoogle Scholar
  130. 130.
    M.I. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Annu. Rep. Prog. Chem., Sect. C, Phys. Chem. 101, 100 (2005). doi: 10.1039/b408909j. http://xlink.rsc.org/?DOI=b408909j Google Scholar
  131. 131.
    C. Vallance, New J. Chem. 29(7), 867 (2005). doi: 10.1039/b504628a. http://xlink.rsc.org/?DOI=b504628a Google Scholar
  132. 132.
    K.W. Busch, M.A. Busch, Cavity-Ringdown Spectroscopy (American Chemical Society, Washington, 1999), pp. i–vii. doi: 10.1021/bk-1999-0720.fw001. http://pubs.acs.org/doi/abs/10.1021/bk-1999-0720.fw001 Google Scholar
  133. 133.
    R.D. van Zee, J.P. Looney (eds.), Experimental Methods in the Physical Sciences, vol. 40 (Academic Press, New York, 2003), pp. 1–323. doi: 10.1016/S1079-4042(03)80015-2. http://www.sciencedirect.com/science/article/pii/S1079404203800152, http://www.sciencedirect.com/science/bookseries/10794042/40 Google Scholar
  134. 134.
    G. Berden, R. Engeln, Cavity Ring-Down Spectroscopy: Techniques and Applications (Wiley-Blackwell, West Sussex, 2009) Google Scholar
  135. 135.
    S.M. Ball, R.L. Jones, Chem. Rev. 103(12), 5239 (2003). doi: 10.1021/cr020523k. http://www.ncbi.nlm.nih.gov/pubmed/14664650 Google Scholar
  136. 136.
    C. Wang, J. Anal. At. Spectrom. 22(11), 1347 (2007). doi: 10.1039/B701223C Google Scholar
  137. 137.
    A. Foltynowicz, F.M. Schmidt, W. Ma, O. Axner, Appl. Phys. B, Lasers Opt. 92(3), 313 (2008). doi: 10.1007/s00340-008-3126-z. <GotoISI>://000258703600003 ADSGoogle Scholar
  138. 138.
    F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, Annu. Rev. Anal. Chem. 3, 175 (2010). doi: 10.1146/annurev-anchem-060908-155248. http://www.ncbi.nlm.nih.gov/pubmed/20636039 Google Scholar
  139. 139.
    A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K.C. Cossel, T.C. Briles, J. Ye, Faraday Discuss. 150, 23 (2011). doi: 10.1039/c1fd00005e. http://xlink.rsc.org/?DOI=c1fd00005e ADSGoogle Scholar
  140. 140.
    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, J.B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487(1–3), 1 (2010). doi: 10.1016/j.cplett.2009.12.073. <GotoISI>://WOS:000274432400001 ADSGoogle Scholar
  141. 141.
    H. Waechter, J. Litman, A.H. Cheung, J.A. Barnes, H.P. Loock, Sensors 10(3), 1716 (2010). doi: 10.3390/s100301716. <GotoISI>://WOS:000277158300016 Google Scholar
  142. 142.
    M. Schnippering, S.R.T. Neil, S.R. Mackenzie, P.R. Unwin, Chem. Soc. Rev. 40(1), 207 (2011). doi: 10.1039/c0cs00017e. <GotoISI>://WOS:000285390900016ISI>://000285390900016 Google Scholar
  143. 143.
  144. 144.
    D.A. Long, A. Cygan, R.D. van Zee, M. Okumura, C.E. Miller, D. Lisak, J.T. Hodges, Chem. Phys. Lett. 536, 1 (2012). doi: 10.1016/j.cplett.2012.03.035. http://linkinghub.elsevier.com/retrieve/pii/S0009261412003466 ADSGoogle Scholar
  145. 145.
    K.K. Lehmann, H. Huang, in Frontiers of Molecular Spectroscopy, ed. by J. Laane (Elsevier, Amsterdam, 2009), pp. 623–658 Google Scholar
  146. 146.
    S.S. Brown, Chem. Rev. 103(12), 5219 (2003). doi: 10.1021/cr020645c. http://www.ncbi.nlm.nih.gov/pubmed/14664649 Google Scholar
  147. 147.
    M.W. Sigrist, R. Bartlome, D. Marinov, J.M. Rey, D.E. Vogler, H. Wachter, Appl. Phys. B, Lasers Opt. 90(2), 289 (2008). doi: 10.1007/s00340-007-2875-4. <GotoISI>://WOS:000252990900019 ADSGoogle Scholar
  148. 148.
    M.N. Fiddler, I. Begashaw, M.A. Mickens, M.S. Collingwood, Z. Assefa, S. Bililign, Sensors 9(12), 10447 (2009). doi: 10.3390/s91210447. http://www.mdpi.com/1424-8220/9/12/10447, <GotoISI>://WOS:000273048800053 Google Scholar
  149. 149.
    X. Cui, C. Lengignon, W. Tao, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez, L. Croize, W. Chen, Y. Wang, W. Zhang, X. Gao, W. Liu, Y. Zhang, F. Dong, J. Quant. Spectrosc. Radiat. Transf. 113(11), 1300 (2012). http://www.sciencedirect.com/science/article/pii/S0022407311003943 ADSGoogle Scholar
  150. 150.
    D.B. Atkinson, Analyst 128(2), 117 (2003). doi: 10.1039/b206699h. http://xlink.rsc.org/?DOI=b206699h ADSGoogle Scholar
  151. 151.
    E.R.T. Kerstel, in Handbook of Stable Isotope Analytical Techniques, vol. 1, ed. by P.A. De Groot (Elsevier, Amsterdam, 2004), pp. 759–787 Google Scholar
  152. 152.
    E.R.T. Kerstel, L. Gianfrani, Appl. Phys. B, Lasers Opt. 92(3), 439 (2008). doi: 10.1007/s00340-008-3128-x. <GotoISI>://000258703600017 ADSGoogle Scholar
  153. 153.
  154. 154.
    S. Cheskis, A. Goldman, Prog. Energy Combust. Sci. 35(4), 365 (2009). doi: 10.1016/j.pecs.2009.02.001. <GotoISI>://WOS:000267195600002 Google Scholar
  155. 155.
    C.J. Wang, P. Sahay, Sensors 9(10), 8230 (2009). doi: 10.3390/s91008230. <GotoISI>://WOS:000271265800034 Google Scholar
  156. 156.
    R.E.H. Miles, S. Rudić, A.J. Orr-Ewing, J.P. Reid, Aerosol Sci. Technol. 45(11), 1360 (2011). doi: 10.1080/02786826.2011.596170. http://dx.doi.org/10.1080/02786826.2011.596170 Google Scholar
  157. 157.
    J.S. Caygill, F. Davis, S.P.J. Higson, Talanta 88, 14 (2012). doi: 10.1016/j.talanta.2011.11.043. <GotoISI>://WOS:000301159400002 Google Scholar
  158. 158.
    G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, Science (N.Y.) 330(6007), 1081 (2010). doi: 10.1126/science.1195818. http://www.ncbi.nlm.nih.gov/pubmed/21030606 ADSGoogle Scholar
  159. 159.
    A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989) Google Scholar
  160. 160.
    K.K. Lehmann, in Cavity-Ringdown Spectroscopy—An Ultratrace-Absorption Measurement Technique, ed. by K.W. Busch, M.A. Busch (American Chemical Society, Washington, 1999), pp. 106–124. doi: 10.1021/bk-1999-0720.ch008. http://pubs.acs.org/doi/abs/10.1021/bk-1999-0720.ch008 Google Scholar
  161. 161.
    M. Triki, P. Cermak, G. Méjean, D. Romanini, Appl. Phys. B, Lasers Opt. 91(1), 195 (2008). doi: 10.1007/s00340-008-2958-x. http://www.springerlink.com/index/10.1007/s00340-008-2958-x ADSGoogle Scholar
  162. 162.
    W.T. Silfast, Laser Fundamentals, 1st edn. (Cambridge University Press, New York, 1996) Google Scholar
  163. 163.
    D.R. Herriott, H. Kogelnik, R. Kompfner, Appl. Opt. 3(4), 523 (1964). doi: 10.1364/AO.3.000523. http://www.opticsinfobase.org/abstract.cfm?URI=ao-3-4-523 ADSGoogle Scholar
  164. 164.
    D. Romanini, Modelling the excitation field of an optical resonator. Appl. Phys. B (2013). doi: 10.1007/s00340-013-5632-x Google Scholar
  165. 165.
    J. Courtois, A.K. Mohamed, D. Romanini, The degenerate astigmatic cavity. Phys. Rev. A (2013 to appear) Google Scholar
  166. 166.
    W. Riley, Handbook of Frequency Stability Analysis, NIST special publication 1065 (1999) Google Scholar
  167. 167.
    P. Werle, R. Miicke, F. Slemr, Appl. Phys., B Photophys. Laser Chem. 57(2), 131 (1993). doi: 10.1007/BF00425997. http://link.springer.com/10.1007/BF00425997 ADSGoogle Scholar
  168. 168.
  169. 169.
    L.S. Ma, J.L. Hall, IEEE J. Quantum Electron. 26(11), 2006 (1990). doi: 10.1109/3.62120. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=62120 ADSGoogle Scholar
  170. 170.
    T.W. Hansch, B. Couillaud, Opt. Commun. 35(3), 441 (1980). doi: 10.1016/0030-4018(80)90069-3 ADSGoogle Scholar
  171. 171.
    R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B, Lasers Opt. 31(2), 97 (1983). doi: 10.1007/BF00702605. http://www.springerlink.com/index/10.1007/BF00702605 ADSGoogle Scholar
  172. 172.
    D.A. Shaddock, M.B. Gray, D.E. McClelland, Opt. Lett. 24(21), 1499 (1999). doi: 10.1364/OL.24.001499 ADSGoogle Scholar
  173. 173.
    J.L. Hall, M.S. Taubman, J. Ye, Laser stabilization, in Handbook of Optics, vol. II: Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry, 3rd edn. (McGraw-Hill, New York, 2010) Google Scholar
  174. 174.
    Z. Li, R.G.T. Bennett, G.E. Stedman, Opt. Commun. 86(1), 51 (1991). doi: 10.1016/0030-4018(91)90242-6. http://linkinghub.elsevier.com/retrieve/pii/0030401891902426 ADSGoogle Scholar
  175. 175.
    Z. Li, G.E. Stedman, H.R. Bilger, Opt. Commun. 100(1–4), 240 (1993). doi: 10.1016/0030-4018(93)90586-T. http://linkinghub.elsevier.com/retrieve/pii/003040189390586T ADSGoogle Scholar
  176. 176.
    J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, J. Opt. Soc. Am. B 14(11), 2811 (1997). doi: 10.1364/JOSAB.14.002811. http://www.opticsinfobase.org/abstract.cfm?URI=josab-14-11-2811 ADSGoogle Scholar
  177. 177.
    M.J. Lawrence, B. Willke, M.E. Husman, E.K. Gustafson, R.L. Byer, J. Opt. Soc. Am. B 16(4), 523 (1999). doi: 10.1364/JOSAB.16.000523. http://www.opticsinfobase.org/abstract.cfm?URI=josab-16-4-523 ADSGoogle Scholar
  178. 178.
    J. Morville, D. Romanini, M. Chenevier, A.A. Kachanov, Appl. Opt. 41(33), 6980 (2002). doi: 10.1364/AO.41.006980. http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-33-6980 ADSGoogle Scholar
  179. 179.
    B. Bakowski, L. Corner, G. Hancock, R. Kotchie, R. Peverall, G.A.D. Ritchie, Appl. Phys. B, Lasers Opt. 75(6–7), 745 (2002). doi: 10.1007/s00340-002-1026-1. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00340-002-1026-1 ADSGoogle Scholar
  180. 180.
    Y. He, B.J. Orr, Appl. Phys. B, Lasers Opt. 79(8), 941 (2004). doi: 10.1007/s00340-004-1691-3. http://www.springerlink.com/index/10.1007/s00340-004-1691-3 ADSGoogle Scholar
  181. 181.
    J. Courtois, A.K. Mohamed, D. Romanini, Opt. Express 18(5), 4845 (2010). http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-5-4845 ADSGoogle Scholar
  182. 182.
    A. Schawlow, C. Townes, Phys. Rev. 112(6), 1940 (1958). doi: 10.1103/PhysRev.112.1940. http://link.aps.org/doi/10.1103/PhysRev.112.1940 ADSGoogle Scholar
  183. 183.
    G. Di Domenico, S. Schilt, P. Thomann, Appl. Opt. 49(25), 4801 (2010) Google Scholar
  184. 184.
    N. Bucalovic, V. Dolgovskiy, C. Schori, P. Thomann, G. Di Domenico, S. Schilt, Appl. Opt. 51(20), 4582 (2012). doi: 10.1364/AO.51.004582 Google Scholar
  185. 185.
    H. Rohde, J. Eschner, F. Schmidt-Kaler, R. Blatt, J. Opt. Soc. Am. B 19(6), 1425 (2002). doi: 10.1364/JOSAB.19.001425. http://www.opticsinfobase.org/abstract.cfm?URI=josab-19-6-1425 ADSGoogle Scholar
  186. 186.
    D. Redding, M. Regehr, L. Sievers, Appl. Opt. 41(15), 2894 (2002). doi: 10.1364/AO.41.002894. http://www.ncbi.nlm.nih.gov/pubmed/12027177 ADSGoogle Scholar
  187. 187.
    J.T. Hodges, J. Looney, R.D. van Zee, Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers, in Cavity-Ringdown Spectroscopy. An Ultratrace-Absorption Measurement Technique, ed. by K.W. Busch, M.A. Busch (American Chemical Society, Washington, 1999). http://pubs.acs.org/isbn/9780841236004 Google Scholar
  188. 188.
    D.Z. Anderson, Appl. Opt. 23(17), 2944 (1984). http://www.ncbi.nlm.nih.gov/pubmed/18213100 ADSGoogle Scholar
  189. 189.
    G. Mueller, Q.Z. Shu, R. Adhikari, D.B. Tanner, D. Reitze, D. Sigg, N. Mavalvala, J. Camp, Opt. Lett. 25(4), 266 (2000). http://www.ncbi.nlm.nih.gov/pubmed/18059850 ADSGoogle Scholar
  190. 190.
    D.H. Lee, Y. Yoon, E.B. Kim, J.Y. Lee, Y.S. Yoo, J.W. Hahn, Appl. Phys. B, Lasers Opt. 74(4–5), 435 (2002). doi: 10.1007/s003400200802. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s003400200802 ADSGoogle Scholar
  191. 191.
    D. Romanini, K.K. Lehmann, J. Chem. Phys. 99, 6287 (1993). doi: 10.1063/1.465866 ADSGoogle Scholar
  192. 192.
    T. Udem, J. Reichert, R. Holzwarth, T.W. Hansch, Opt. Lett. 24(13), 881 (1999). http://www.ncbi.nlm.nih.gov/pubmed/18073883 ADSGoogle Scholar
  193. 193.
    S.A. Diddams, L.W. Hollberg, L.S. Ma, L. Robertsson, Opt. Lett. 27(1), 58 (2002). doi: 10.1364/OL.27.000058. http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-1-58 ADSGoogle Scholar
  194. 194.
    D.J. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Science 288(5466), 635 (2000). doi: 10.1126/science.288.5466.635. http://www.sciencemag.org/cgi/doi/10.1126/science.288.5466.635 ADSGoogle Scholar
  195. 195.
    A. Bartels, C.W. Oates, L.W. Hollberg, S.A. Diddams, Opt. Lett. 29(10), 1081 (2004). doi: 10.1364/OL.29.001081. http://www.opticsinfobase.org/abstract.cfm?URI=OL-29-10-1081 ADSGoogle Scholar
  196. 196.
    R. Jason Jones, I. Thomann, J. Ye, Phys. Rev. A 69(5), 2 (2004). doi: 10.1103/PhysRevA.69.051803. http://link.aps.org/doi/10.1103/PhysRevA.69.051803 Google Scholar
  197. 197.
    W. Zhang, M. Lours, M. Fischer, R. Holzwarth, G. Santarelli, Y. Le Coq, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(3), 432 (2012). doi: 10.1109/TUFFC.2012.2212. http://www.ncbi.nlm.nih.gov/pubmed/22481776 Google Scholar
  198. 198.
  199. 199.
  200. 200.
    T. Gherman, ML-CEAS a new high sensitivity absorption spectroscopy technique using ultra-short laser pulses. Ph.D. thesis, University J. Fourier Grenoble, 2004 Google Scholar
  201. 201.
    R. Jason Jones, J.C. Diels, Phys. Rev. Lett. 86(15), 3288 (2001). doi: 10.1103/PhysRevLett.86.3288. http://link.aps.org/doi/10.1103/PhysRevLett.86.3288 ADSGoogle Scholar
  202. 202.
    J.C. Diels, R. Jason Jones, L. Arissian, in Femtosecond Optical Frequency Comb: Principle, Operation, and Applications, ed. by J. Ye, S.T. Cundiff (Kluwer Academic/Springer, Norwell, 2005), Chap. 12. http://link.springer.com/chapter/10.1007/0-387-23791-7_12 Google Scholar
  203. 203.
    T.C. Briles, D.C. Yost, A. Cingöz, J. Ye, T.R. Schibli, Opt. Express 18(10), 9739 (2010). doi: 10.1364/OE.18.009739. http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-10-9739 ADSGoogle Scholar
  204. 204.
    S. Xiao, A.M. Weiner, Opt. Express 12(13), 2895 (2004). http://www.ncbi.nlm.nih.gov/pubmed/19483805 ADSGoogle Scholar
  205. 205.
    R. Grilli, G. Méjean, S. Kassi, I. Ventrillard, C. Abd Alrahman, E. Fasci, D. Romanini, Appl. Phys. B, Lasers Opt. 107(1), 205 (2011). doi: 10.1007/s00340-011-4812-9. http://www.springerlink.com/index/10.1007/s00340-011-4812-9 ADSGoogle Scholar
  206. 206.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Daniele Romanini
    • 1
    Email author
  • Irène Ventrillard
    • 1
  • Guillaume Méjean
    • 1
  • Jérôme Morville
    • 2
  • Erik Kerstel
    • 1
  1. 1.LIPhy UMR 5588Univ. Grenoble 1/CNRSGrenobleFrance
  2. 2.Institut Lumière Matière, UMR5306 Université Lyon 1-CNRSUniversité de LyonVilleurbanne cedexFrance

Personalised recommendations