Intelligence for the Personal Web

  • Marie Matheson
  • Patrick Martin
  • Jimmy Lo
  • Joanna Ng
  • Daisy Tan
  • Brian Thomson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7855)


The traditional paradigm for Web interactions, where the interactions are server-driven rather than user-driven, has limitations that are becoming increasingly apparent. The Personal Web proposes to provide intelligent services that support a more user-centric interaction paradigm in order to allow the user to more easily assemble and aggregate web elements to accomplish specific tasks.

In this paper we examine the role predictive analytics can play in intelligent services supporting decision-making tasks and describe the Predictive Analytics in Smart Interactions Framework (PASIF), which is a framework for incorporating predictive analytics into intelligent services. PASIF achieves effective levels of support in the dynamic real-time environment of the Personal Web by incorporating ensemble models and techniques to detect and adapt to concept drift in the data sources.


Personal Web predictive analytics real-time analytics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ng, J.: The Personal Web: Smart Internet for Me. In: Proceedings of First Symposium on the Personal Web (2010)Google Scholar
  2. 2.
    Agosta, L.: The Future of Data Mining – Predictive Analytics. DM Review (2004)Google Scholar
  3. 3.
    Abdulsalam, H., Skillicorn, D., Martin, P.: Classification Using Streaming Random Forests. IEEE Transactions on Knowledge and Data Engineering 23(1), 22–36 (2011)CrossRefGoogle Scholar
  4. 4.
    Bigus, J., Chitnis, U., Deshpande, P., Kannan, R., Mohania, M., Negi, S., Deepak, P., Pednault, E., Soni, S., Telkar, B., White, B.: CRM Analytics Framework. In: Proc. of 15th Int. Conf. on Management of Data (COMAD 2009), Mysore, India (2009)Google Scholar
  5. 5.
    Martin, P., Matheson, M., Lo, J., Ng, J., Tan, D., Thomson, B.: Supporting Smart Interactions with Predictive Analytics. In: Chignell, M., Cordy, J., Ng, J., Yesha, Y. (eds.) The Smart Internet. LNCS, vol. 6400, pp. 103–114. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Matheson, M.: PASIF: A Framework for Supporting Smart Interactions with Predictive Analytics. MSc thesis, School of Computing, Queen’s University (2011)Google Scholar
  7. 7.
    Tung, L., Xu, Y., Li, Y.: A framework for e-commerce oriented recommendation systems. In: Proceedings of the 2005 International Conference on Active Media Technology (AMT 2005), May 19-21, pp. 309–314 (2005)Google Scholar
  8. 8.
    Chuang, H., Wang, L., Pan, C.: A Study on the Comparison between Content-Based and Preference-Based Recommendation Systems. In: Fourth International Conference on Semantics, Knowledge and Grid, SKG 2008, December 3-5, pp. 477–480 (2008)Google Scholar
  9. 9.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, EC 2000, Minneapolis, Minnesota, United States, October 17-20, pp. 158–167. ACM, New York (2000)Google Scholar
  10. 10.
    Zhang, Q., Pang, C., McBride, S., Hansen, D., Cheung, C., Steyn, M.: Towards Health Data Stream Analytics. In: Proceedings of 2010 IEEE/ICME International Conference on Complex Medical Engineering (CME), pp. 282–287 (2010)Google Scholar
  11. 11.
    Tsai, C., Lee, C., Yang, W.: An Efficient and Sensitive Decision Tree Approach to Mining Concept-Drifting Data Streams. Informatica 19(1), 135–156 (2008)MathSciNetMATHGoogle Scholar
  12. 12.
    Wong, A., Wu, R.: 5E: A framework to yield high performance in real-time data mining over the Internet. In: Proceedings of the Fourth International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region, pp. 708–713 (2000)Google Scholar
  13. 13.
    Deng, X., Ghanem, M., Guo, Y.: Real-Time Data Mining Methodology and a Supporting Framework. In: Proceedings of Third International Conference on Network and System Security (NSS 2009), pp. 522–527 (2009)Google Scholar
  14. 14.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Google Scholar
  15. 15.
    Holmes, G., Donkin, A., Witten, I.: WEKA: A machine learning workbench. In: Proceedings of 1994 Second Australian and New Zealand Conference on Intelligent Information Systems, pp. 357–361 (1994)Google Scholar
  16. 16.
    Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences (2010),

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marie Matheson
    • 1
  • Patrick Martin
    • 1
  • Jimmy Lo
    • 2
  • Joanna Ng
    • 2
  • Daisy Tan
    • 2
  • Brian Thomson
    • 2
  1. 1.School of ComputingQueen’s UniversityKingstonCanada
  2. 2.IBM Canada Toronto LaboratoryMarkhamCanada

Personalised recommendations